Suppr超能文献

基于轨迹的感觉运动完全性创伤性颈脊髓损伤恢复分类

Trajectory-Based Classification of Recovery in Sensorimotor Complete Traumatic Cervical Spinal Cord Injury.

作者信息

Jaja Blessing N R, Badhiwala Jetan, Guest James, Harrop James, Shaffrey Chris, Boakye Max, Kurpad Shekar, Grossman Robert, Toups Elizabeth, Geisler Fred, Kwon Brian, Aarabi Bizhan, Kotter Mark, Fehlings Michael G, Wilson Jefferson R

机构信息

From the Division of Neurosurgery and Spine Program (B.N.R.J., M.G.F.), Toronto Western Hospital, Division of Neurosurgery and Spine Program (J.B.), and Division of Neurosurgery and Spine Program, St. Michael's Hospital (J.R.W.), University of Toronto, Canada; Division of Neurosurgery (J.G.), University of Miami, FL; Division of Neurosurgery (J.H.), Thomas Jefferson University Hospital, Philadelphia, PA; Duke Spine Division (C.S.), Duke University School of Medicine, Durham, NC; Division of Neurosurgery (M.B.), University of Louisville, KY; Division of Neurosurgery (S.K.), Medical College of Wisconsin, Milwaukee; Division of Neurosurgery (R.G., E.T.), Methodist Hospital, Houston, TX; Chicago Institute of Neurosurgery and Neuroresearch (F.G.), Rush University, IL; Division of Spine Surgery (B.K.), Vancouver General Hospital, University of British Columbia, Canada; Division of Neurosurgery, Shock Trauma (B.A.), University of Maryland, Baltimore; and Division of Neurosurgery, Department of Clinical Neurosciences (M.K.), University of Cambridge, UK.

出版信息

Neurology. 2021 May 31;96(22):e2736-e2748. doi: 10.1212/WNL.0000000000012028.

Abstract

OBJECTIVE

To test the hypothesis that sensorimotor complete traumatic cervical spinal cord injury (SCI) is a heterogenous clinical entity comprising several subpopulations that follow fundamentally different trajectories of neurologic recovery.

METHODS

We analyzed demographic and injury data from 655 patients who were pooled from 4 prospective longitudinal multicenter studies. Group-based trajectory modeling was applied to model neurologic recovery trajectories over the initial 12 months postinjury and to identify predictors of recovery trajectories. Neurologic outcomes included upper extremity motor score, total motor scores, and American Spinal Injury Association Impairment Scale (AIS) grade improvement.

RESULTS

The analysis identified 3 distinct trajectories of neurologic recovery. These clinical courses included (1) marginal recovery trajectory, characterized by minimal or no improvement in motor strength or change in AIS grade status (remained grade A); (2) moderate recovery trajectory, characterized by low baseline motor scores that improved approximately 13 points or AIS conversion of 1 grade point; (3) good recovery trajectory, characterized by baseline motor scores in the upper quartile that improved to near maximum values within 3 months of injury. Patients following the moderate or good recovery trajectories were younger, had more caudally located injuries, had a higher degree of preserved motor and sensory function at baseline examination, and exhibited a greater extent of motor and sensory function in the zone of partial preservation.

CONCLUSION

Cervical complete SCI can be classified into one of 3 distinct subpopulations with fundamentally different trajectories of neurologic recovery. This study defines unique clinical phenotypes based on potential for recovery, rather than baseline severity of injury alone. This approach may prove beneficial in clinical prognostication and in the design and interpretation of clinical trials in SCI.

摘要

目的

检验以下假设,即感觉运动完全性创伤性颈脊髓损伤(SCI)是一种异质性临床实体,由几个亚群组成,这些亚群遵循根本不同的神经恢复轨迹。

方法

我们分析了从4项前瞻性纵向多中心研究中汇总的655例患者的人口统计学和损伤数据。应用基于组的轨迹模型来模拟损伤后最初12个月内的神经恢复轨迹,并确定恢复轨迹的预测因素。神经学结果包括上肢运动评分、总运动评分和美国脊髓损伤协会损伤量表(AIS)分级改善情况。

结果

分析确定了3种不同的神经恢复轨迹。这些临床病程包括:(1)边缘恢复轨迹,其特征为运动强度改善极小或无改善,或AIS分级状态无变化(仍为A级);(2)中度恢复轨迹,其特征为基线运动评分低,改善约13分或AIS转换1个等级点;(3)良好恢复轨迹,其特征为基线运动评分处于上四分位数,在损伤后3个月内改善至接近最大值。遵循中度或良好恢复轨迹的患者更年轻,损伤部位更靠下,在基线检查时保留的运动和感觉功能程度更高,并且在部分保留区表现出更大程度的运动和感觉功能。

结论

颈髓完全性SCI可分为3个不同的亚群之一,其神经恢复轨迹根本不同。本研究基于恢复潜力而非仅基于损伤的基线严重程度定义了独特的临床表型。这种方法可能在临床预后以及SCI临床试验的设计和解释中证明是有益的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验