Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Nat Commun. 2021 Apr 13;12(1):2204. doi: 10.1038/s41467-021-22466-9.
Intra-tumor heterogeneity renders the identification of somatic single-nucleotide variants (SNVs) a challenging problem. In particular, low-frequency SNVs are hard to distinguish from sequencing artifacts. While the increasing availability of multi-sample tumor DNA sequencing data holds the potential for more accurate variant calling, there is a lack of high-sensitivity multi-sample SNV callers that utilize these data. Here we report Moss, a method to identify low-frequency SNVs that recur in multiple sequencing samples from the same tumor. Moss provides any existing single-sample SNV caller the ability to support multiple samples with little additional time overhead. We demonstrate that Moss improves recall while maintaining high precision in a simulated dataset. On multi-sample hepatocellular carcinoma, acute myeloid leukemia and colorectal cancer datasets, Moss identifies new low-frequency variants that meet manual review criteria and are consistent with the tumor's mutational signature profile. In addition, Moss detects the presence of variants in more samples of the same tumor than reported by the single-sample caller. Moss' improved sensitivity in SNV calling will enable more detailed downstream analyses in cancer genomics.
肿瘤内异质性使得鉴定体细胞单核苷酸变异(SNV)成为一个具有挑战性的问题。特别是,低频 SNV 很难与测序伪影区分开来。虽然多样本肿瘤 DNA 测序数据的可用性不断增加,为更准确的变异调用提供了潜力,但缺乏利用这些数据的高灵敏度多样本 SNV 调用器。在这里,我们报告了 Moss,一种用于识别来自同一肿瘤的多个测序样本中反复出现的低频 SNV 的方法。Moss 为任何现有的单样本 SNV 调用器提供了支持多个样本的能力,而几乎没有额外的时间开销。我们证明,在模拟数据集上,Moss 在保持高精度的同时提高了召回率。在多样本肝癌、急性髓细胞白血病和结直肠癌数据集上,Moss 鉴定了新的低频变异,这些变异符合手动审查标准,并且与肿瘤的突变特征图谱一致。此外,Moss 在同一肿瘤的更多样本中检测到了变异,而不是单样本调用器报告的变异。Moss 在 SNV 调用中的改进的灵敏度将能够在癌症基因组学中进行更详细的下游分析。