Suppr超能文献

针对高度混合肿瘤数据的单核苷酸变异(SNV)检测工具的综合基准测试。

Comprehensive benchmarking of SNV callers for highly admixed tumor data.

作者信息

Bohnert Regina, Vivas Sonia, Jansen Gunther

机构信息

Molecular Health GmbH, Heidelberg, Germany.

出版信息

PLoS One. 2017 Oct 11;12(10):e0186175. doi: 10.1371/journal.pone.0186175. eCollection 2017.

Abstract

Precision medicine attempts to individualize cancer therapy by matching tumor-specific genetic changes with effective targeted therapies. A crucial first step in this process is the reliable identification of cancer-relevant variants, which is considerably complicated by the impurity and heterogeneity of clinical tumor samples. We compared the impact of admixture of non-cancerous cells and low somatic allele frequencies on the sensitivity and precision of 19 state-of-the-art SNV callers. We studied both whole exome and targeted gene panel data and up to 13 distinct parameter configurations for each tool. We found vast differences among callers. Based on our comprehensive analyses we recommend joint tumor-normal calling with MuTect, EBCall or Strelka for whole exome somatic variant calling, and HaplotypeCaller or FreeBayes for whole exome germline calling. For targeted gene panel data on a single tumor sample, LoFreqStar performed best. We further found that tumor impurity and admixture had a negative impact on precision, and in particular, sensitivity in whole exome experiments. At admixture levels of 60% to 90% sometimes seen in pathological biopsies, sensitivity dropped significantly, even when variants were originally present in the tumor at 100% allele frequency. Sensitivity to low-frequency SNVs improved with targeted panel data, but whole exome data allowed more efficient identification of germline variants. Effective somatic variant calling requires high-quality pathological samples with minimal admixture, a consciously selected sequencing strategy, and the appropriate variant calling tool with settings optimized for the chosen type of data.

摘要

精准医学试图通过将肿瘤特异性基因变化与有效的靶向治疗相匹配来实现癌症治疗的个体化。这一过程中至关重要的第一步是可靠地识别与癌症相关的变异,而临床肿瘤样本的杂质和异质性使这一过程变得相当复杂。我们比较了非癌细胞混合和低体细胞等位基因频率对19种最先进的单核苷酸变异(SNV)检测工具的灵敏度和准确性的影响。我们研究了全外显子组数据和靶向基因panel数据,以及每种工具多达13种不同的参数配置。我们发现不同检测工具之间存在巨大差异。基于我们的综合分析,我们推荐使用MuTect、EBCall或Strelka进行联合肿瘤-正常样本检测以进行全外显子组体细胞变异检测,使用HaplotypeCaller或FreeBayes进行全外显子组种系变异检测。对于单个肿瘤样本的靶向基因panel数据,LoFreqStar表现最佳。我们还发现肿瘤杂质和混合对准确性有负面影响,尤其是在全外显子组实验中的灵敏度。在病理活检中有时会出现的60%至90%的混合水平下,即使变异最初在肿瘤中的等位基因频率为100%,灵敏度也会显著下降。靶向panel数据提高了对低频SNV的灵敏度,但全外显子组数据能更有效地识别种系变异。有效的体细胞变异检测需要高质量的病理样本,尽量减少混合,有意识地选择测序策略,以及选择适合所选数据类型且设置优化的合适变异检测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/944c/5636151/737917f8f704/pone.0186175.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验