Suppr超能文献

疫苗效力试验中借鉴历史对照数据的贝叶斯方法

Bayesian borrowing from historical control data in a vaccine efficacy trial.

作者信息

Peng Lin, Jin Jing, Chambonneau Laurent, Zhao Xing, Zhang Juying

机构信息

Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.

Biostatistical Sciences Sanofi, Beijing, China.

出版信息

Pharm Stat. 2023 Sep-Oct;22(5):815-835. doi: 10.1002/pst.2313. Epub 2023 May 24.

Abstract

In the context of vaccine efficacy trial where the incidence rate is very low and a very large sample size is usually expected, incorporating historical data into a new trial is extremely attractive to reduce sample size and increase estimation precision. Nevertheless, for some infectious diseases, seasonal change in incidence rates poses a huge challenge in borrowing historical data and a critical question is how to properly take advantage of historical data borrowing with acceptable tolerance to between-trials heterogeneity commonly from seasonal disease transmission. In this article, we extend a probability-based power prior which determines the amount of information to be borrowed based on the agreement between the historical and current data, to make it applicable for either a single or multiple historical trials available, with constraint on the amount of historical information to be borrowed. Simulations are conducted to compare the performance of the proposed method with other methods including modified power prior (MPP), meta-analytic-predictive (MAP) prior and the commensurate prior methods. Furthermore, we illustrate the application of the proposed method for trial design in a practical setting.

摘要

在疫苗效力试验中,发病率很低且通常需要非常大的样本量,将历史数据纳入新试验对于减少样本量和提高估计精度极具吸引力。然而,对于某些传染病,发病率的季节性变化给借用历史数据带来了巨大挑战,一个关键问题是如何在对通常因季节性疾病传播导致的试验间异质性具有可接受容忍度的情况下,恰当地利用借用的历史数据。在本文中,我们扩展了一种基于概率的功效先验方法,该方法根据历史数据与当前数据之间的一致性来确定要借用的信息量,使其适用于单个或多个可用的历史试验,并对要借用的历史信息量进行约束。进行了模拟,以比较所提出方法与其他方法(包括修正功效先验(MPP)、荟萃分析预测(MAP)先验和相应先验方法)的性能。此外,我们说明了所提出方法在实际环境中用于试验设计的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验