Suppr超能文献

用于在随机临床试验分析中纳入真实世界数据的匹配辅助功率先验法。

Matching-Assisted Power Prior for Incorporating Real-World Data in Randomized Clinical Trial Analysis.

作者信息

Qian Ruoyuan, Yang Biqing, Xu Xinyi, Lu Bo

机构信息

Division of Biostatistics, College of Public Health, The Ohio State University, Ohio, USA.

Department of Statistics, The Ohio State University, Ohio, USA.

出版信息

Stat Med. 2025 Feb 10;44(3-4):e10342. doi: 10.1002/sim.10342.

Abstract

Leveraging external data information to supplement randomized clinical trials has been a popular topic in recent years, especially for medical device and drug discovery. In rare diseases, it is very challenging to recruit patients and run a large-scale randomized trial. To take advantage of real-world data from historical trials on the same disease, we can run a small hybrid trial and borrow historical controls to increase the power. But the borrowing needs to be conducted in a statistically principled manner. Bayesian power prior methods and propensity score adjustments have been discussed in the literature. In this paper, we propose a matching-assisted power prior approach to better mitigate observed bias when incorporating external data. A subset of comparable external subjects is selected by groups through template matching, and different weights are assigned to these groups based on their similarity to the current study population. Power priors are then implemented to incorporate the information into Bayesian inference. Unlike conventional power prior methods, which discount all control patients similarly, matching pre-selects good controls, hence improved the quality of external data being borrowed. We compare its performance with the existing propensity score-integrated power prior approach through simulation studies and illustrate the implementation using data from a real acupuncture clinical trial.

摘要

近年来,利用外部数据信息来补充随机临床试验一直是一个热门话题,特别是在医疗器械和药物研发方面。在罕见病领域,招募患者并开展大规模随机试验极具挑战性。为了利用同一疾病历史试验中的真实世界数据,我们可以开展一个小型混合试验,并借用历史对照来提高检验效能。但这种借用需要以统计学原则的方式进行。文献中已经讨论了贝叶斯效能先验方法和倾向得分调整。在本文中,我们提出一种匹配辅助效能先验方法,以便在纳入外部数据时更好地减轻观察到的偏差。通过模板匹配按组选择可比的外部受试者子集,并根据它们与当前研究人群的相似性为这些组分配不同的权重。然后实施效能先验以将信息纳入贝叶斯推断。与传统的效能先验方法不同,传统方法对所有对照患者进行类似的折扣,而匹配则预先选择良好的对照,从而提高了所借用外部数据的质量。我们通过模拟研究将其性能与现有的倾向得分整合效能先验方法进行比较,并使用一项真实针灸临床试验的数据说明其实施过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8b/11754725/0927b11c3898/SIM-44-0-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验