Suppr超能文献

利用未知信号位置的低对比度信号检测评估进行 CT 图像评估。

CT image assessment by low contrast signal detectability evaluation with unknown signal location.

机构信息

Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland 20993-0002.

出版信息

Med Phys. 2013 Nov;40(11):111908. doi: 10.1118/1.4824055.

Abstract

PURPOSE

To devise a new methodology for CT image quality evaluation in order to assess the dose reduction potential of new iterative reconstruction algorithms (IRA).

METHODS

Because of the nonlinear behavior of IRA, the authors propose a task-based methodology consisting of measuring the detectability of small, low contrast signals at random locations. The authors test, via simulations, a phantom design that facilitates human and numerical observer studies in such conditions. The setup allows for the random selection of regions of interest (ROI) around each signal, so that the relative signal location is unknown if the ROIs are shown separately. With such a setup one can perform signal detectability measurements with a variety of image reading arrangements and data analysis methods. In this work, the authors demonstrate the use of the localization relative operating characteristic method. The phantom design also allows for efficient image evaluation utilizing an automatic signal search technique and a recently developed nonparametric data analysis method using the exponential transformation of the free response characteristic curve.

RESULTS

The authors present the application of these methods by performing a comparison between the filtered back projection (FBP) algorithm and a polychromatic iterative image reconstruction algorithm. In this generic illustration of the image evaluation framework, the expected improved performance of the IRA over FBP is confirmed.

CONCLUSIONS

The results demonstrate the ability of these methods to determine signal detectability indices with good accuracy with only a small number, of the order of a few tens, of image samples.

摘要

目的

设计一种新的 CT 图像质量评估方法,以评估新的迭代重建算法(IRA)的剂量降低潜力。

方法

由于 IRA 的非线性行为,作者提出了一种基于任务的方法,包括测量小的、低对比度信号在随机位置的可检测性。作者通过模拟测试了一种便于在这种条件下进行人体和数字观察者研究的幻影设计。该设置允许围绕每个信号随机选择感兴趣区域(ROI),因此如果单独显示 ROI,则相对信号位置是未知的。通过这种设置,可以使用各种图像阅读安排和数据分析方法进行信号可检测性测量。在这项工作中,作者展示了使用定位相对操作特性方法的应用。该幻影设计还允许利用自动信号搜索技术和最近开发的利用自由响应特性曲线指数变换的非参数数据分析方法进行有效的图像评估。

结果

作者通过在滤波反投影(FBP)算法和多色迭代图像重建算法之间进行比较,展示了这些方法的应用。在这种图像评估框架的通用说明中,确认了 IRA 相对于 FBP 的预期性能改进。

结论

这些方法的结果表明,它们能够以较小的图像样本数量(几十),以较高的精度确定信号可检测性指数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验