IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Aug;68(8):2645-2656. doi: 10.1109/TUFFC.2021.3073292. Epub 2021 Jul 26.
Singular value decomposition (SVD) is a valuable factorization technique used in clutter rejection filtering for power Doppler imaging. Conventionally, SVD is applied to a Casorati matrix of radio frequency data, which enables filtering based on spatial or temporal characteristics. In this article, we propose a clutter filtering method that uses a higher order SVD (HOSVD) applied to a tensor of aperture data, e.g., delayed channel data. We discuss temporal, spatial, and aperture domain features that can be leveraged in filtering and demonstrate that this multidimensional approach improves sensitivity toward blood flow. Further, we show that HOSVD remains more robust to short ensemble lengths than conventional SVD filtering. Validation of this technique is shown using Field II simulations and in vivo data.
奇异值分解(Singular Value Decomposition,SVD)是一种在功率多普勒成像的杂波抑制滤波中非常有用的因式分解技术。传统上,SVD 应用于射频数据的 Casorati 矩阵,从而可以基于空间或时间特征进行滤波。在本文中,我们提出了一种使用高阶奇异值分解(Higher Order SVD,HOSVD)应用于孔径数据张量(例如延迟通道数据)的杂波滤波方法。我们讨论了可用于滤波的时间、空间和孔径域特征,并证明这种多维方法可提高对血流的敏感性。此外,我们还表明,与传统的 SVD 滤波相比,HOSVD 对短集合长度更稳健。该技术的验证使用 Field II 模拟和体内数据进行。