Suppr超能文献

多维杂乱滤波优化在超声灌注成像中的应用。

Multidimensional Clutter Filter Optimization for Ultrasonic Perfusion Imaging.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Nov;65(11):2020-2029. doi: 10.1109/TUFFC.2018.2868441. Epub 2018 Sep 3.

Abstract

Combinations of novel pulse-echo acquisitions and clutter filtering techniques can improve the sensitivity and the specificity of power Doppler (PD) images, thus reducing the need for exogenous contrast enhancement. We acquire echoes following bursts of Doppler pulse transmissions sparsely applied in regular patterns over long durations. The goal is to increase the sensitivity of the acquisition to slow disorganized patterns of motion from the peripheral blood perfusion. To counter a concomitant increase in clutter signal power, we arrange the temporal echo acquisitions into two data-array axes, combine them with a spatial axis for the tissue region of interest, and apply 3-D singular-value decomposition (SVD) clutter filtering. Successful separation of blood echoes from other echo signal sources requires that we partition the 3-D SVD core tensor. Unfortunately, the clutter and blood subspaces do not completely uncouple in all situations, so we developed a statistical classifier that identifies the core tensor subspace dominated by tissue clutter power. This paper describes an approach to subspace partitioning as required for optimizing PD imaging of peripheral perfusion. The technique is validated using echo simulation, flow-phantom data, and in vivo data from a murine melanoma model. We find that for narrow eigen-bandwidth clutter signals, we can routinely map phantom flows and tumor perfusion signals at speeds less than 3 mL/min. The proposed method is well suited to peripheral perfusion imaging applications.

摘要

新型脉冲回波采集和杂波滤波技术的组合可以提高功率多普勒 (PD) 图像的灵敏度和特异性,从而减少对外源性对比增强的需求。我们在长时间内以稀疏的方式在规则模式下采集回波,遵循多普勒脉冲传输的爆发。其目的是提高采集对来自外周血液灌注的缓慢、紊乱的运动模式的灵敏度。为了应对杂波信号功率的同时增加,我们将时间回波采集安排成两个数据数组轴,将它们与组织感兴趣区的空间轴相结合,并应用 3-D 奇异值分解 (SVD) 杂波滤波。要成功地将血液回波与其他回波信号源分离,我们需要对 3-D SVD 核心张量进行分区。不幸的是,在所有情况下,杂波和血液子空间都不会完全解耦,因此我们开发了一种统计分类器,可以识别由组织杂波功率主导的核心张量子空间。本文介绍了一种优化外周灌注 PD 成像所需的子空间分区方法。该技术使用回声模拟、流动体模数据和来自小鼠黑色素瘤模型的体内数据进行了验证。我们发现,对于较窄的特征带宽杂波信号,我们可以常规地以低于 3 mL/min 的速度映射体模流动和肿瘤灌注信号。该方法非常适合外周灌注成像应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验