Suppr超能文献

复杂领域中基于深度学习的非盲图像去模糊

Nonblind Image Deblurring via Deep Learning in Complex Field.

作者信息

Quan Yuhui, Lin Peikang, Xu Yong, Nan Yuesong, Ji Hui

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Oct;33(10):5387-5400. doi: 10.1109/TNNLS.2021.3070596. Epub 2022 Oct 5.

Abstract

Nonblind image deblurring is about recovering the latent clear image from a blurry one generated by a known blur kernel, which is an often-seen yet challenging inverse problem in imaging. Its key is how to robustly suppress noise magnification during the inversion process. Recent approaches made a breakthrough by exploiting convolutional neural network (CNN)-based denoising priors in the image domain or the gradient domain, which allows using a CNN for noise suppression. The performance of these approaches is highly dependent on the effectiveness of the denoising CNN in removing magnified noise whose distribution is unknown and varies at different iterations of the deblurring process for different images. In this article, we introduce a CNN-based image prior defined in the Gabor domain. The prior not only utilizes the optimal space-frequency resolution and strong orientation selectivity of the Gabor transform but also enables using complex-valued (CV) representations in intermediate processing for better denoising. A CV CNN is developed to exploit the benefits of the CV representations, with better generalization to handle unknown noises over the real-valued ones. Combining our Gabor-domain CV CNN-based prior with an unrolling scheme, we propose a deep-learning-based approach to nonblind image deblurring. Extensive experiments have demonstrated the superior performance of the proposed approach over the state-of-the-art ones.

摘要

非盲图像去模糊是指从由已知模糊核生成的模糊图像中恢复潜在的清晰图像,这是成像中一个常见但具有挑战性的逆问题。其关键在于如何在反演过程中稳健地抑制噪声放大。最近的方法通过利用图像域或梯度域中基于卷积神经网络(CNN)的去噪先验取得了突破,这使得可以使用CNN进行噪声抑制。这些方法的性能高度依赖于去噪CNN在去除放大噪声方面的有效性,而放大噪声的分布未知且在不同图像的去模糊过程的不同迭代中会发生变化。在本文中,我们介绍了一种在Gabor域中定义的基于CNN的图像先验。该先验不仅利用了Gabor变换的最佳空间频率分辨率和强方向选择性,还能够在中间处理中使用复值(CV)表示以实现更好的去噪。开发了一种CV CNN来利用CV表示的优势,与实值CNN相比,它在处理未知噪声方面具有更好的泛化能力。将我们基于Gabor域CV CNN的先验与展开方案相结合,我们提出了一种基于深度学习的非盲图像去模糊方法。大量实验表明,所提出的方法优于现有方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验