Suppr超能文献

基于深度循环一致性学习的剩余使用寿命预测中的退化对齐。

Degradation Alignment in Remaining Useful Life Prediction Using Deep Cycle-Consistent Learning.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Oct;33(10):5480-5491. doi: 10.1109/TNNLS.2021.3070840. Epub 2022 Oct 5.

Abstract

Due to the benefits of reduced maintenance cost and increased operational safety, effective prognostic methods have always been highly demanded in real industries. In the recent years, intelligent data-driven remaining useful life (RUL) prediction approaches have been successfully developed and achieved promising performance. However, the existing methods mostly set hard RUL labels on the training data and pay less attention to the degradation pattern variations of different entities. This article proposes a deep learning-based RUL prediction method. The cycle-consistent learning scheme is proposed to achieve a new representation space, where the data of different entities in similar degradation levels can be well aligned. A first predicting time determination approach is further proposed, which facilitates the following degradation percentage estimation and RUL prediction tasks. The experimental results on a popular degradation data set suggest that the proposed method offers a novel perspective on data-driven prognostic studies and a promising tool for RUL estimations.

摘要

由于降低维护成本和提高运营安全性的好处,在实际工业中,一直高度需要有效的预测方法。近年来,智能数据驱动的剩余使用寿命(RUL)预测方法已经得到成功开发,并取得了有前景的性能。然而,现有的方法大多在训练数据上设置了硬 RUL 标签,而较少关注不同实体的退化模式变化。本文提出了一种基于深度学习的 RUL 预测方法。提出了循环一致学习方案来实现新的表示空间,其中相似退化水平的不同实体的数据可以很好地对齐。进一步提出了一种首次预测时间确定方法,这有助于后续的退化百分比估计和 RUL 预测任务。在一个流行的退化数据集上的实验结果表明,所提出的方法为数据驱动的预测研究提供了新的视角,是 RUL 估计的有前途的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验