Suppr超能文献

基于深度学习的剩余使用寿命预测:一项综述。

Remaining Useful Life Prediction Based on Deep Learning: A Survey.

作者信息

Wu Fuhui, Wu Qingbo, Tan Yusong, Xu Xinghua

机构信息

School of Information Engineering, Wuhan College, Wuhan 430212, China.

College of Computer, National University of Defense Technology, Changsha 410073, China.

出版信息

Sensors (Basel). 2024 May 27;24(11):3454. doi: 10.3390/s24113454.

Abstract

Remaining useful life (RUL) is a metric of health state for essential equipment. It plays a significant role in health management. However, RUL is often random and unknown. One type of physics-based method builds a mathematical model for RUL using prior principles, but this is a tough task in real-world applications. Another type of method estimates RUL from available information through condition and health monitoring; this is known as the data-driven method. Traditional data-driven methods require significant human effort in designing health features to represent performance degradation, yet the prediction accuracy is limited. With breakthroughs in various application scenarios in recent years, deep learning techniques provide new insights into this problem. Over the past few years, deep-learning-based RUL prediction has attracted increasing attention from the academic community. Therefore, it is necessary to conduct a survey on deep-learning-based RUL prediction. To ensure a comprehensive survey, the literature is reviewed from three dimensions. Firstly, a unified framework is proposed for deep-learning-based RUL prediction and the models and approaches in the literature are reviewed under this framework. Secondly, detailed estimation processes are compared from the perspective of different deep learning models. Thirdly, the literature is examined from the perspective of specific problems, such as scenarios where the collected data consist of limited labeled data. Finally, the main challenges and future directions are summarized.

摘要

剩余使用寿命(RUL)是关键设备健康状态的一个指标。它在健康管理中起着重要作用。然而,RUL往往是随机且未知的。一类基于物理的方法利用先验原理为RUL建立数学模型,但这在实际应用中是一项艰巨的任务。另一类方法通过状态和健康监测从可用信息中估计RUL;这被称为数据驱动方法。传统的数据驱动方法在设计用于表示性能退化的健康特征时需要大量人力,但其预测准确性有限。近年来,随着深度学习技术在各种应用场景中的突破,为这个问题提供了新的思路。在过去几年中,基于深度学习的RUL预测受到了学术界越来越多的关注。因此,有必要对基于深度学习的RUL预测进行综述。为确保综述全面,从三个维度对文献进行了回顾。首先,为基于深度学习的RUL预测提出了一个统一框架,并在此框架下回顾了文献中的模型和方法。其次,从不同深度学习模型的角度比较了详细的估计过程。第三,从特定问题的角度审视文献,如收集的数据由有限的标记数据组成的场景。最后,总结了主要挑战和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d2/11174398/932a86fa9952/sensors-24-03454-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验