Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria.
Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria.
Bioinformatics. 2022 Jul 11;38(14):3665-3667. doi: 10.1093/bioinformatics/btac366.
MicroRNAs have been shown to be able to modulate the tumor microenvironment and the immune response and hence could be interesting biomarkers and therapeutic targets in immuno-oncology; however, dedicated analysis tools are missing. Here, we present a user-friendly web platform MIO and a Python toolkit miopy integrating various methods for visualization and analysis of provided or custom bulk microRNA and gene expression data. We include regularized regression and survival analysis and provide information of 40 microRNA target prediction tools as well as a collection of curated immune related gene and microRNA signatures and processed TCGA data including estimations of infiltrated immune cells and the immunophenoscore. The integration of several machine learning methods enables the selection of prognostic and predictive microRNAs and gene interaction network biomarkers.
https://mio.icbi.at, https://github.com/icbi-lab/mio and https://github.com/icbi-lab/miopy.
Supplementary data are available at Bioinformatics online.
MicroRNAs 已被证明能够调节肿瘤微环境和免疫反应,因此它们可能是免疫肿瘤学中有价值的生物标志物和治疗靶点;然而,目前缺乏专门的分析工具。在这里,我们展示了一个用户友好的网络平台 MIO 和一个 Python 工具包 miopy,它集成了各种方法,用于可视化和分析提供的或自定义的批量 MicroRNA 和基因表达数据。我们包括正则化回归和生存分析,并提供了 40 种 MicroRNA 靶预测工具的信息,以及一系列经过精心整理的与免疫相关的基因和 MicroRNA 特征以及处理后的 TCGA 数据,包括估计浸润的免疫细胞和免疫表型评分。几种机器学习方法的集成可以选择预后和预测性的 MicroRNAs 和基因相互作用网络生物标志物。
https://mio.icbi.at,https://github.com/icbi-lab/mio 和 https://github.com/icbi-lab/miopy。
补充数据可在生物信息学在线获得。