Shi Chenyang, Hu Fan, Wu Ronghui, Xu Zijie, Shao Guangwei, Yu Rui, Liu Xiang Yang
College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China.
College of Textiles, Engineering Research Center of Technical Textile of Ministry of Education, Donghua University, Shanghai, 201620, P. R. China.
Adv Mater. 2021 Dec;33(50):e2005910. doi: 10.1002/adma.202005910. Epub 2021 Apr 14.
Two of the key questions to be addressed are whether and how one can turn cocoon silk into fascinating materials with different electronic and optical functions so as to fabricate the flexible devices. In this review, a comprehensive overview of the unique strategy of mesoscopic functionalization starting from silk fibroin (SF) materials to the fabrication of various meso flexible SF devices is presented. Notably, SF materials with novel and enhanced properties can be achieved by mesoscopically reconstructing the hierarchical structures of SF materials. This is based on rerouting the refolding process of SF molecules by meso-nucleation templating. As-acquired functionalized SF materials can be applied to fabricate bio-compatible/degradable flexible/implantable meso-optical/electronic devices of various types. Consequently, functionalized SF can be fabricated into optical elements, that is, nonlinear photonic and fluorescent components, and make it possible to construct silk meso-electronics with high-performance. These advances enable the applications of SF-material based devices in the areas of physical and biochemical sensing, meso-memristors, transistors, brain electrodes, and energy generation/storage, applicable to on-skin long-term monitoring of human physiological conditions, and in-body sensing, information processing, and storage.
需要解决的两个关键问题是,是否以及如何将蚕茧丝转化为具有不同电子和光学功能的迷人材料,以便制造柔性器件。在这篇综述中,我们全面概述了从丝素蛋白(SF)材料到各种介观柔性SF器件制造的介观功能化独特策略。值得注意的是,通过介观重构SF材料的层次结构,可以实现具有新颖和增强性能的SF材料。这是基于通过介观成核模板重新引导SF分子的重折叠过程。所获得的功能化SF材料可用于制造各种类型的生物相容/可降解柔性/可植入介观光学/电子器件。因此,功能化SF可以制成光学元件,即非线性光子和荧光组件,并有可能构建高性能的丝介观电子器件。这些进展使得基于SF材料的器件能够应用于物理和生化传感、介观忆阻器、晶体管、脑电极以及能量产生/存储等领域,适用于人体生理状况的皮肤长期监测以及体内传感、信息处理和存储。