Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
Immunity. 2021 Apr 13;54(4):660-672.e9. doi: 10.1016/j.immuni.2021.03.008.
Interleukin-22 (IL-22) acts on epithelial cells to promote tissue protection and regeneration, but can also elicit pro-inflammatory effects, contributing to disease pathology. Here, we engineered a high-affinity IL-22 super-agonist that enabled the structure determination of the IL-22-IL-22Rα-IL-10Rβ ternary complex to a resolution of 2.6 Å. Using structure-based design, we systematically destabilized the IL-22-IL-10Rβ binding interface to create partial agonist analogs that decoupled downstream STAT1 and STAT3 signaling. The extent of STAT bias elicited by a single ligand varied across tissues, ranging from full STAT3-biased agonism to STAT1/3 antagonism, correlating with IL-10Rβ expression levels. In vivo, this tissue-selective signaling drove tissue protection in the pancreas and gastrointestinal tract without inducing local or systemic inflammation, thereby uncoupling these opposing effects of IL-22 signaling. Our findings provide insight into the mechanisms underlying the cytokine pleiotropy and illustrate how differential receptor expression levels and STAT response thresholds can be synthetically exploited to endow pleiotropic cytokines with enhanced functional specificity.
白细胞介素-22 (IL-22) 作用于上皮细胞以促进组织保护和再生,但也可以引发促炎作用,导致疾病发病机制。在这里,我们设计了一种高亲和力的 IL-22 超激动剂,使 IL-22-IL-22Rα-IL-10Rβ 三元复合物的结构解析分辨率达到 2.6Å。通过基于结构的设计,我们系统地破坏了 IL-22-IL-10Rβ 结合界面,从而创建了部分激动剂类似物,这些类似物分离了下游 STAT1 和 STAT3 信号。单个配体引发的 STAT 偏倚程度因组织而异,从完全 STAT3 偏向激动剂到 STAT1/3 拮抗剂不等,与 IL-10Rβ 表达水平相关。在体内,这种组织选择性信号转导在不引起局部或全身炎症的情况下驱动胰腺和胃肠道的组织保护,从而将 IL-22 信号的这些相反作用解耦。我们的发现提供了对细胞因子多效性背后机制的深入了解,并说明了如何综合利用差异受体表达水平和 STAT 反应阈值来赋予多效性细胞因子增强的功能特异性。