Suppr超能文献

甲硫氨酸-Mettl3-N6-甲基腺苷轴促进多囊肾病。

A methionine-Mettl3-N-methyladenosine axis promotes polycystic kidney disease.

机构信息

Department of Internal Medicine and Division of Nephrology, UT Southwestern Medical Center Dallas, TX 75390, USA.

Department of Anesthesiology and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

Cell Metab. 2021 Jun 1;33(6):1234-1247.e7. doi: 10.1016/j.cmet.2021.03.024. Epub 2021 Apr 13.

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic disorder marked by numerous progressively enlarging kidney cysts. Mettl3, a methyltransferase that catalyzes the abundant N-methyladenosine (mA) RNA modification, is implicated in development, but its role in most diseases is unknown. Here, we show that Mettl3 and mA levels are increased in mouse and human ADPKD samples and that kidney-specific transgenic Mettl3 expression produces tubular cysts. Conversely, Mettl3 deletion in three orthologous ADPKD mouse models slows cyst growth. Interestingly, methionine and S-adenosylmethionine (SAM) levels are also elevated in ADPKD models. Moreover, methionine and SAM induce Mettl3 expression and aggravate ex vivo cyst growth, whereas dietary methionine restriction attenuates mouse ADPKD. Finally, Mettl3 activates the cyst-promoting c-Myc and cAMP pathways through enhanced c-Myc and Avpr2 mRNA mA modification and translation. Thus, Mettl3 promotes ADPKD and links methionine utilization to epitranscriptomic activation of proliferation and cyst growth.

摘要

常染色体显性多囊肾病(ADPKD)是一种常见的单基因疾病,其特征是大量逐渐增大的肾囊肿。Mettl3 是一种甲基转移酶,可催化丰富的 N6-甲基腺苷(m6A)RNA 修饰,参与发育过程,但在大多数疾病中的作用尚不清楚。在这里,我们表明 Mettl3 和 mA 水平在小鼠和人类 ADPKD 样本中增加,并且肾脏特异性转基因 Mettl3 表达可产生管状囊肿。相反,在三种同源 ADPKD 小鼠模型中敲除 Mettl3 可减缓囊肿生长。有趣的是,ADPKD 模型中的蛋氨酸和 S-腺苷甲硫氨酸(SAM)水平也升高。此外,蛋氨酸和 SAM 诱导 Mettl3 表达并加重体外囊肿生长,而饮食中蛋氨酸限制可减轻小鼠 ADPKD。最后,Mettl3 通过增强 c-Myc 和 Avpr2 mRNA m6A 修饰和翻译来激活促进囊肿形成的 c-Myc 和 cAMP 途径。因此,Mettl3 促进了 ADPKD 的发生,并将蛋氨酸利用与增殖和囊肿生长的表观转录组激活联系起来。

相似文献

1
A methionine-Mettl3-N-methyladenosine axis promotes polycystic kidney disease.
Cell Metab. 2021 Jun 1;33(6):1234-1247.e7. doi: 10.1016/j.cmet.2021.03.024. Epub 2021 Apr 13.
2
The N-Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy.
Circulation. 2019 Jan 22;139(4):533-545. doi: 10.1161/CIRCULATIONAHA.118.036146.
3
METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism.
Biochem Biophys Res Commun. 2019 Oct 8;518(1):120-126. doi: 10.1016/j.bbrc.2019.08.018. Epub 2019 Aug 10.
4
mA RNA methylation drives kidney fibrosis by upregulating β-catenin signaling.
Int J Biol Sci. 2024 Jun 3;20(8):3185-3200. doi: 10.7150/ijbs.96233. eCollection 2024.
5
METTL3-Mediated N 6 -Methyladenosine mRNA Modification and cGAS-STING Pathway Activity in Kidney Fibrosis.
J Am Soc Nephrol. 2024 Oct 1;35(10):1312-1329. doi: 10.1681/ASN.0000000000000428. Epub 2024 Jun 10.
7
The mA methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network.
Oncogene. 2019 May;38(19):3667-3680. doi: 10.1038/s41388-019-0683-z. Epub 2019 Jan 18.
8
METTL3-mediated N-methyladenosine mRNA modification enhances long-term memory consolidation.
Cell Res. 2018 Nov;28(11):1050-1061. doi: 10.1038/s41422-018-0092-9. Epub 2018 Oct 8.
9
Dynamic mA mRNA methylation reveals the role of METTL3-mA-CDCP1 signaling axis in chemical carcinogenesis.
Oncogene. 2019 Jun;38(24):4755-4772. doi: 10.1038/s41388-019-0755-0. Epub 2019 Feb 22.

引用本文的文献

2
MR Promotes Ferroptosis in Gastric Cancer by Regulating FANCD2 Expression Mediated by m6A Modification.
Appl Biochem Biotechnol. 2025 Aug 12. doi: 10.1007/s12010-025-05355-5.
3
Decoding mA RNA methylation in kidney disorders: from molecular insights to therapeutic strategies.
J Transl Med. 2025 Jul 10;23(1):771. doi: 10.1186/s12967-025-06817-4.
4
Wheat-Based Protein Slows Disease Progression in Pkd1 Knockout Mice.
Function (Oxf). 2025 Aug 1;6(4). doi: 10.1093/function/zqaf026.
5
An RNA transmethylation pathway governs kidney nephrogenic potential.
Nat Commun. 2025 May 28;16(1):4930. doi: 10.1038/s41467-025-60097-6.
6
The Impact of METTL3 on MDM2 Promotes Podocytes Injury During Diabetic Kidney Disease.
J Cell Mol Med. 2025 May;29(10):e70627. doi: 10.1111/jcmm.70627.
7
Cardiovascular Mettl3 Deficiency Causes Congenital Cardiac Defects and Postnatal Lethality in Mice.
Int J Biol Sci. 2025 Mar 10;21(6):2430-2445. doi: 10.7150/ijbs.100941. eCollection 2025.
8
Metabolic reprogramming in polycystic kidney disease and other renal ciliopathies.
EMBO Mol Med. 2025 Apr 22. doi: 10.1038/s44321-025-00239-x.
9
Role of mA RNA methylation in renal resident cell injury.
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2024 Nov 28;49(11):1757-1768. doi: 10.11817/j.issn.1672-7347.2024.230600.
10
Physiologic mechanisms underlying polycystic kidney disease.
Physiol Rev. 2025 Jul 1;105(3):1553-1607. doi: 10.1152/physrev.00018.2024. Epub 2025 Feb 12.

本文引用的文献

1
HBXIP promotes gastric cancer METTL3-mediated MYC mRNA m6A modification.
Aging (Albany NY). 2020 Oct 13;12(24):24967-24982. doi: 10.18632/aging.103767.
2
Roles of N6-Methyladenosine (mA) in Stem Cell Fate Decisions and Early Embryonic Development in Mammals.
Front Cell Dev Biol. 2020 Aug 11;8:782. doi: 10.3389/fcell.2020.00782. eCollection 2020.
4
Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling.
Cell Signal. 2020 Aug;72:109649. doi: 10.1016/j.cellsig.2020.109649. Epub 2020 Apr 23.
6
Interstitial microRNA miR-214 attenuates inflammation and polycystic kidney disease progression.
JCI Insight. 2020 Apr 9;5(7):133785. doi: 10.1172/jci.insight.133785.
7
Small-Molecule Inhibitors of METTL3, the Major Human Epitranscriptomic Writer.
ChemMedChem. 2020 May 6;15(9):744-748. doi: 10.1002/cmdc.202000011. Epub 2020 Mar 23.
8
METTL3 Facilitates Oral Squamous Cell Carcinoma Tumorigenesis by Enhancing c-Myc Stability via YTHDF1-Mediated mA Modification.
Mol Ther Nucleic Acids. 2020 Jun 5;20:1-12. doi: 10.1016/j.omtn.2020.01.033. Epub 2020 Feb 4.
9
The master regulators Myc and p53 cellular signaling and functions in polycystic kidney disease.
Cell Signal. 2020 Jul;71:109594. doi: 10.1016/j.cellsig.2020.109594. Epub 2020 Mar 4.
10
Metalloproteinase PAPP-A regulation of IGF-1 contributes to polycystic kidney disease pathogenesis.
JCI Insight. 2020 Feb 27;5(4):135700. doi: 10.1172/jci.insight.135700.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验