Suppr超能文献

多目标进化算法揭示的人类大脑网络的成本效益权衡。

Cost-efficiency trade-offs of the human brain network revealed by a multiobjective evolutionary algorithm.

机构信息

Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.

Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.

出版信息

Neuroimage. 2021 Aug 1;236:118040. doi: 10.1016/j.neuroimage.2021.118040. Epub 2021 Apr 20.

Abstract

It is widely believed that the formation of brain network architecture is under the pressure of optimal trade-off between reducing wiring cost and promoting communication efficiency. However, the questions of whether this trade-off exists in empirical human brain structural networks and, if so, how it takes effect are still not well understood. Here, we employed a multiobjective evolutionary algorithm to directly and quantitatively explore the cost-efficiency trade-off in human brain structural networks. Using this algorithm, we generated a population of synthetic networks with optimal but diverse cost-efficiency trade-offs. It was found that these synthetic networks could not only reproduce a large portion of connections in the empirical brain structural networks but also embed a resembling small-world organization. Moreover, the synthetic and empirical brain networks were found similar in terms of the spatial arrangement of hub regions and the modular structure, which are two important topological features widely assumed to be outcomes of cost-efficiency trade-offs. The synthetic networks had high robustness against random attacks as the empirical brain networks did. Additionally, we also revealed some differences between the synthetic networks and the empirical brain networks, including lower segregated processing capacity and weaker robustness against targeted attacks in the synthetic networks. These findings provide direct and quantitative evidence that the structure of human brain networks is indeed largely influenced by optimal cost-efficiency trade-offs. We also suggest that some additional factors (e.g., segregated processing capacity) might jointly determine the network organization with cost and efficiency.

摘要

人们普遍认为,大脑网络结构的形成是在降低布线成本和提高通信效率之间的最优权衡压力下产生的。然而,这种权衡是否存在于经验性的人类大脑结构网络中,以及如果存在,它是如何起作用的,这些问题仍未得到很好的理解。在这里,我们采用了一种多目标进化算法来直接和定量地探索人类大脑结构网络中的成本-效率权衡。利用这个算法,我们生成了一个具有最优但多样化的成本-效率权衡的合成网络群体。结果发现,这些合成网络不仅可以再现经验大脑结构网络中的大部分连接,而且可以嵌入类似的小世界组织。此外,合成和经验大脑网络在枢纽区域的空间排列和模块结构方面也具有相似性,这两个拓扑特征被广泛认为是成本-效率权衡的结果。与经验大脑网络一样,合成网络具有很高的抗随机攻击能力。此外,我们还发现了合成网络和经验大脑网络之间的一些差异,包括合成网络的分处理能力较低,以及抗针对性攻击的能力较弱。这些发现为成本-效率权衡在很大程度上影响人类大脑网络结构提供了直接和定量的证据。我们还提出,一些额外的因素(例如,分处理能力)可能与成本和效率一起共同决定网络组织。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验