Suppr超能文献

用于同时去除色谱图中基线噪声和基线漂移的深度卷积自动编码器。

Deep convolutional autoencoder for the simultaneous removal of baseline noise and baseline drift in chromatograms.

机构信息

University of Leuven (KU Leuven), Department for Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium; Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium.

University of Leuven (KU Leuven), Department for Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium.

出版信息

J Chromatogr A. 2021 Jun 7;1646:462093. doi: 10.1016/j.chroma.2021.462093. Epub 2021 Mar 23.

Abstract

Enhancement of chromatograms, such as the reduction of baseline noise and baseline drift, is often essential to accurately detect and quantify analytes in a mixture. Current methods have been well studied and adopted for decades and have assisted researchers in obtaining reliable results. However, these methods rely on relatively simple statistics of the data (chromatograms) which in some cases result in significant information loss and inaccuracies. In this study, a deep one-dimensional convolutional autoencoder was developed that simultaneously removes baseline noise and baseline drift with minimal information loss, for a large number and great variety of chromatograms. To enable the autoencoder to denoise a chromatogram to be almost, or completely, noise-free, it was trained on data obtained from an implemented chromatogram simulator that generated 190.000 representative simulated chromatograms. The trained autoencoder was then tested and compared to some of the most widely used and well-established denoising methods on testing datasets of tens of thousands of simulated chromatograms; and then further tested and verified on real chromatograms. The results show that the developed autoencoder can successfully remove baseline noise and baseline drift simultaneously with minimal information loss; outperforming methods like Savitzky-Golay smoothing, Gaussian smoothing and wavelet smoothing for baseline noise reduction (root mean squared error of 1.094 mAU compared to 2.074 mAU, 2.394 mAU and 2.199 mAU) and Savitkzy-Golay smoothing combined with asymmetric least-squares or polynomial fitting for baseline noise and baseline drift reduction (root mean absolute error of 1.171 mAU compared to 3.397 mAU and 4.923 mAU). Evidence is presented that autoencoders can be utilized to enhance and correct chromatograms and consequently improve and alleviate downstream data analysis, with the drawback of needing a carefully implemented simulator, that generates realistic chromatograms, to train the autoencoder.

摘要

提高色谱图的质量,如减少基线噪声和基线漂移,对于准确检测和定量混合物中的分析物通常是至关重要的。当前的方法已经经过了数十年的深入研究和采用,并帮助研究人员获得了可靠的结果。然而,这些方法依赖于数据(色谱图)的相对简单的统计信息,在某些情况下会导致重大的信息损失和不准确。在本研究中,开发了一种深度一维卷积自动编码器,它可以在最小信息损失的情况下同时去除基线噪声和基线漂移,适用于大量不同类型的色谱图。为了使自动编码器能够将色谱图去噪到几乎或完全无噪声的程度,它是在一个实现的色谱图模拟器生成的 19 万张代表模拟色谱图的数据上进行训练的。然后,对经过训练的自动编码器进行测试,并与一些最广泛使用和成熟的去噪方法在数万个模拟色谱图的测试数据集上进行比较;然后在真实的色谱图上进一步进行测试和验证。结果表明,所开发的自动编码器可以成功地去除基线噪声和基线漂移,同时最小化信息损失;在基线噪声降低方面优于 Savitzky-Golay 平滑、高斯平滑和小波平滑等方法(均方根误差为 1.094 mAU,而分别为 2.074 mAU、2.394 mAU 和 2.199 mAU),在基线噪声和基线漂移降低方面优于 Savitkzy-Golay 平滑与不对称最小二乘法或多项式拟合的组合(均方根绝对误差为 1.171 mAU,而分别为 3.397 mAU 和 4.923 mAU)。有证据表明,自动编码器可用于增强和校正色谱图,从而改善和缓解下游数据分析,缺点是需要一个精心实现的模拟器,生成逼真的色谱图来训练自动编码器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验