Department of Mathematics, University of Patras, 26500 Patras, Greece.
Core Innovation and Technology O.E., 11745 Athens, Greece.
Sensors (Basel). 2021 Nov 20;21(22):7731. doi: 10.3390/s21227731.
Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencoders constitute an unsupervised dimensionality reduction technique, proven to filter out noise and redundant information and create robust and stable feature representations. In this work, in order to resolve the problem of DL models' vulnerability, we propose a convolutional autoencoder topological model for compressing and filtering out noise and redundant information from initial high dimensionality input images and then feeding this compressed output into convolutional neural networks. Our results reveal the efficiency of the proposed approach, leading to a significant performance improvement compared to Deep Learning models trained with the initial raw images.
深度卷积神经网络在图像分类领域表现出了显著的性能。然而,深度学习模型容易受到封装在高维原始输入图像中的噪声和冗余信息的影响,导致预测不稳定和不可靠。自动编码器是一种无监督降维技术,已被证明可以滤除噪声和冗余信息,从而创建稳健和稳定的特征表示。在这项工作中,为了解决 DL 模型的脆弱性问题,我们提出了一种卷积自动编码器拓扑模型,用于从初始高维输入图像中压缩和滤除噪声和冗余信息,然后将压缩后的输出输入到卷积神经网络中。我们的结果表明了所提出方法的有效性,与使用初始原始图像训练的深度学习模型相比,性能有了显著提高。