Kasai Y, Leipe C, Saito M, Kitagawa H, Lauterbach S, Brauer A, Tarasov P E, Goslar T, Arai F, Sakuma S
Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Aichi 464-8603, Japan.
Institute for Space-Earth Environmental Research, Nagoya University, Aichi 464-8603, Japan.
Sci Adv. 2021 Apr 14;7(16). doi: 10.1126/sciadv.abe7327. Print 2021 Apr.
Particle sorting is a fundamental method in various fields of medical and biological research. However, existing sorting applications are not capable for high-throughput sorting of large-size (>100 micrometers) particles. Here, we present a novel on-chip sorting method using traveling vortices generated by on-demand microjet flows, which locally exceed laminar flow condition, allowing for high-throughput sorting (5 kilohertz) with a record-wide sorting area of 520 micrometers. Using an activation system based on fluorescence detection, the method successfully sorted 160-micrometer microbeads and purified fossil pollen (maximum dimension around 170 micrometers) from lake sediments. Radiocarbon dates of sorting-derived fossil pollen concentrates proved accurate, demonstrating the method's ability to enhance building chronologies for paleoenvironmental records from sedimentary archives. The method is capable to cover urgent needs for high-throughput large-particle sorting in genomics, metabolomics, and regenerative medicine and opens up new opportunities for the use of pollen and other microfossils in geochronology, paleoecology, and paleoclimatology.
颗粒分选是医学和生物学研究各个领域的一种基本方法。然而,现有的分选应用无法对大尺寸(>100微米)颗粒进行高通量分选。在此,我们提出一种新颖的芯片上分选方法,该方法利用按需微射流产生的移动涡流,这些涡流局部超过层流条件,从而实现高通量分选(5千赫兹),分选区域宽度达到520微米,创历史记录。利用基于荧光检测的激活系统,该方法成功分选了160微米的微珠,并从湖泊沉积物中纯化出了化石花粉(最大尺寸约为170微米)。分选得到的化石花粉浓缩物的放射性碳年代测定结果证明是准确的,这表明该方法有能力改进从沉积档案中获取古环境记录的年代学构建。该方法能够满足基因组学、代谢组学和再生医学中对高通量大颗粒分选的迫切需求,并为在地质年代学、古生态学和古气候学中使用花粉及其他微化石开辟了新机会。