Suppr超能文献

使用非病毒方法生产 CAR T 细胞。

CAR T-Cell Production Using Nonviral Approaches.

机构信息

Masaryk University Brno, Faculty of Medicine, Department of Histology and Embryology, Kamenice 5, Brno 62500, Czech Republic.

St. Anne's University Hospital Brno, International Clinical Research Center, Pekarska 53, Brno 656 91, Czech Republic.

出版信息

J Immunol Res. 2021 Mar 27;2021:6644685. doi: 10.1155/2021/6644685. eCollection 2021.

Abstract

Chimeric antigen receptor T-cells (CAR T-cells) represent a novel and promising approach in cancer immunotherapy. According to the World Health Organization (WHO), the number of oncological patients is steadily growing in developed countries despite immense progress in oncological treatments, and the prognosis of individual patients is still relatively poor. Exceptional results have been recorded for CAR T-cell therapy in patients suffering from B-cell malignancies. This success opens up the possibility of using the same approach for other types of cancers. To date, the most common method for CAR T-cell generation is the use of viral vectors. However, dealing with virus-derived vectors brings possible obstacles in the CAR T-cell manufacturing process owing to strict regulations and high cost demands. Alternative approaches may facilitate further development and the transfer of the method to clinical practice. The most promising substitutes for virus-derived vectors are transposon-derived vectors, most commonly sleeping beauty, which offer great coding capability and a safe integration profile while maintaining a relatively low production cost. This review is aimed at summarizing the state of the art of nonviral approaches in CAR T-cell generation, with a unique perspective on the conditions in clinical applications and current Good Manufacturing Practice. If CAR T-cell therapy is to be routinely used in medical practice, the manufacturing cost and complexity need to be as low as possible, and transposon-based vectors seem to meet these criteria better than viral-based vectors.

摘要

嵌合抗原受体 T 细胞(CAR T 细胞)在癌症免疫疗法中代表了一种新颖且有前途的方法。根据世界卫生组织(WHO)的数据,尽管在癌症治疗方面取得了巨大进展,但发达国家的癌症患者数量仍在稳步增加,个别患者的预后仍然相对较差。CAR T 细胞疗法在治疗 B 细胞恶性肿瘤患者方面取得了非凡的效果。这一成功为其他类型的癌症使用相同的方法开辟了可能性。迄今为止,CAR T 细胞生成最常见的方法是使用病毒载体。然而,由于严格的规定和高成本要求,处理源自病毒的载体会给 CAR T 细胞制造过程带来可能的障碍。替代方法可能会促进进一步的发展并将该方法转移到临床实践中。源自病毒的载体最有前途的替代品是转座子衍生的载体,最常见的是睡美人,它提供了出色的编码能力和安全的整合谱,同时保持相对较低的生产成本。本综述旨在总结 CAR T 细胞生成中非病毒方法的最新进展,特别关注临床应用和现行良好生产规范的条件。如果要将 CAR T 细胞疗法常规用于医学实践,则制造的成本和复杂性需要尽可能低,而基于转座子的载体似乎比基于病毒的载体更能满足这些标准。

相似文献

1
CAR T-Cell Production Using Nonviral Approaches.
J Immunol Res. 2021 Mar 27;2021:6644685. doi: 10.1155/2021/6644685. eCollection 2021.
3
Minicircles for CAR T Cell Production by Sleeping Beauty Transposition: A Technological Overview.
Methods Mol Biol. 2022;2521:25-39. doi: 10.1007/978-1-0716-2441-8_2.
4
Generation of CAR+ T Lymphocytes Using the Sleeping Beauty Transposon System.
Methods Mol Biol. 2020;2086:131-137. doi: 10.1007/978-1-0716-0146-4_9.
5
Generation of CAR-T Cells with Sleeping Beauty Transposon Gene Transfer.
Methods Mol Biol. 2022;2521:41-66. doi: 10.1007/978-1-0716-2441-8_3.
6
Minicircle-Based Engineering of Chimeric Antigen Receptor (CAR) T Cells.
Recent Results Cancer Res. 2016;209:37-50. doi: 10.1007/978-3-319-42934-2_3.
7
Choosing the Right Tool for Genetic Engineering: Clinical Lessons from Chimeric Antigen Receptor-T Cells.
Hum Gene Ther. 2021 Oct;32(19-20):1044-1058. doi: 10.1089/hum.2021.173.
8
Generation of CAR-T Cells for Cancer Immunotherapy.
Methods Mol Biol. 2019;1884:349-360. doi: 10.1007/978-1-4939-8885-3_24.
9
A new approach to CAR T-cell gene engineering and cultivation using piggyBac transposon in the presence of IL-4, IL-7 and IL-21.
Cytotherapy. 2018 Apr;20(4):507-520. doi: 10.1016/j.jcyt.2017.10.001. Epub 2018 Feb 21.
10
The paths toward non-viral CAR-T cell manufacturing: A comprehensive review of state-of-the-art methods.
Life Sci. 2024 Jul 1;348:122683. doi: 10.1016/j.lfs.2024.122683. Epub 2024 May 1.

引用本文的文献

1
Preclinical efficacy of multi-targeting mRNA-based CAR T cell therapy in resection models of glioblastoma.
Mol Ther Nucleic Acids. 2025 Aug 11;36(3):102676. doi: 10.1016/j.omtn.2025.102676. eCollection 2025 Sep 9.
2
Colorectal Cancer; Novel Approaches in Chimeric Antigen Receptors (CAR) -T cell.
Int J Mol Cell Med. 2025 Jul 1;14(2):777-792. doi: 10.22088/IJMCM.BUMS.14.2.777. eCollection 2025.
4
New player in CAR-T manufacture field: comparison of umbilical cord to peripheral blood strategies.
Front Immunol. 2025 Mar 21;16:1561174. doi: 10.3389/fimmu.2025.1561174. eCollection 2025.
6
Revolutionizing cancer treatment: an in-depth exploration of CAR-T cell therapies.
Med Oncol. 2024 Oct 14;41(11):275. doi: 10.1007/s12032-024-02491-6.
7
Advanced strategies in improving the immunotherapeutic effect of CAR-T cell therapy.
Mol Oncol. 2024 Aug;18(8):1821-1848. doi: 10.1002/1878-0261.13621. Epub 2024 Mar 8.
8
Cas9-induced targeted integration of large DNA payloads in primary human T cells via homology-mediated end-joining DNA repair.
Nat Biomed Eng. 2024 Dec;8(12):1553-1570. doi: 10.1038/s41551-023-01157-4. Epub 2023 Dec 13.
10
From barriers to novel strategies: smarter CAR T therapy hits hard to tumors.
Front Immunol. 2023 Jul 14;14:1203230. doi: 10.3389/fimmu.2023.1203230. eCollection 2023.

本文引用的文献

1
Sleeping Beauty-engineered CAR T cells achieve antileukemic activity without severe toxicities.
J Clin Invest. 2020 Nov 2;130(11):6021-6033. doi: 10.1172/JCI138473.
3
Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors.
N Engl J Med. 2020 Feb 6;382(6):545-553. doi: 10.1056/NEJMoa1910607.
5
Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering.
Nano Lett. 2020 Mar 11;20(3):1578-1589. doi: 10.1021/acs.nanolett.9b04246. Epub 2020 Feb 5.
6
Expanding CAR T cells in human platelet lysate renders T cells with in vivo longevity.
J Immunother Cancer. 2019 Nov 28;7(1):330. doi: 10.1186/s40425-019-0804-9.
7
Correction to: Preclinical assessment of transiently TCR redirected T cells for solid tumour immunotherapy.
Cancer Immunol Immunother. 2020 Jan;69(1):159-161. doi: 10.1007/s00262-019-02409-6.
8
GMP-Compliant Manufacturing of NKG2D CAR Memory T Cells Using CliniMACS Prodigy.
Front Immunol. 2019 Oct 10;10:2361. doi: 10.3389/fimmu.2019.02361. eCollection 2019.
10
Large-scale expansion and characterization of CD3 T-cells in the Quantum Cell Expansion System.
J Transl Med. 2019 Aug 7;17(1):258. doi: 10.1186/s12967-019-2001-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验