Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, 53113 Bonn, Germany.
Université de Lorraine, INRAE, IAM, Nancy 54000, France.
Plant Physiol. 2021 Jul 6;186(3):1507-1525. doi: 10.1093/plphys/kiab172.
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe-S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe-S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe-S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe-S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe-S supply in grxs15 mutants.
铁硫 (Fe-S) 簇是所有生命中普遍存在的辅因子,广泛用于各种不同的生物过程,包括电子传递链和几种代谢途径。Fe-S 簇的生物合成机制存在于质体、细胞质和线粒体中。在酵母和哺乳动物的线粒体中,单个单硫醇谷氧还蛋白 (GRX) 参与 Fe-S 簇的组装。在植物中,线粒体同源物 GRXS15 的作用仅部分得到了表征。拟南芥 (Arabidopsis thaliana) grxs15 缺失突变体不能存活,但突变体与变体 GRXS15 K83A 互补后表现出与 GRXS15amiR 敲低系相似的矮小表型。在对变体和敲低 GRXS15 系进行深入的代谢分析中,我们表明,大多数依赖 Fe-S 簇的过程不受影响,包括生物素生物合成、钼辅因子生物合成、电子传递链和三羧酸 (TCA) 循环中的顺乌头酸酶。相反,我们观察到大多数 TCA 循环中间产物和氨基酸,特别是丙酮酸、甘氨酸和支链氨基酸 (BCAA) 的增加。此外,我们发现支链α-酮酸 (BCKA) 的积累,BCAA 转氨基作用的第一个降解产物。在野生型植物中,丙酮酸、甘氨酸和 BCKA 都通过线粒体脂酰辅酶 (LC) 依赖性脱氢酶复合物的脱羧作用代谢。这些酶复合物非常丰富,构成 LC 的主要汇点。由于 LC 的生物合成依赖于持续向脂酰合酶供应 Fe-S 簇,这可以解释为什么 LC 依赖性过程在 grxs15 突变体中对有限的 Fe-S 供应最为敏感。