Iñigo Sabrina, Durand Astrid Nagels, Ritter Andrés, Le Gall Sabine, Termathe Martin, Klassen Roland, Tohge Takayuki, De Coninck Barbara, Van Leene Jelle, De Clercq Rebecca, Cammue Bruno P A, Fernie Alisdair R, Gevaert Kris, De Jaeger Geert, Leidel Sebastian A, Schaffrath Raffael, Van Lijsebettens Mieke, Pauwels Laurens, Goossens Alain
Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.).
Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
Plant Physiol. 2016 Oct;172(2):858-873. doi: 10.1104/pp.16.00261. Epub 2016 Aug 8.
Cytosolic monothiol glutaredoxins (GRXs) are required in iron-sulfur (Fe-S) cluster delivery and iron sensing in yeast and mammals. In plants, it is unclear whether they have similar functions. Arabidopsis (Arabidopsis thaliana) has a sole class II cytosolic monothiol GRX encoded by GRXS17 Here, we used tandem affinity purification to establish that Arabidopsis GRXS17 associates with most known cytosolic Fe-S assembly (CIA) components. Similar to mutant plants with defective CIA components, grxs17 loss-of-function mutants showed some degree of hypersensitivity to DNA damage and elevated expression of DNA damage marker genes. We also found that several putative Fe-S client proteins directly bind to GRXS17, such as XANTHINE DEHYDROGENASE1 (XDH1), involved in the purine salvage pathway, and CYTOSOLIC THIOURIDYLASE SUBUNIT1 and CYTOSOLIC THIOURIDYLASE SUBUNIT2, both essential for the 2-thiolation step of 5-methoxycarbonylmethyl-2-thiouridine (mcmsU) modification of tRNAs. Correspondingly, profiling of the grxs17-1 mutant pointed to a perturbed flux through the purine degradation pathway and revealed that it phenocopied mutants in the elongator subunit ELO3, essential for the mcm tRNA modification step, although we did not find XDH1 activity or tRNA thiolation to be markedly reduced in the grxs17-1 mutant. Taken together, our data suggest that plant cytosolic monothiol GRXs associate with the CIA complex, as in other eukaryotes, and contribute to, but are not essential for, the correct functioning of client Fe-S proteins in unchallenged conditions.
胞质单硫醇谷氧还蛋白(GRXs)在酵母和哺乳动物的铁硫(Fe-S)簇传递及铁感应过程中发挥作用。在植物中,它们是否具有类似功能尚不清楚。拟南芥(Arabidopsis thaliana)有一个由GRXS17编码的唯一的II类胞质单硫醇GRX。在此,我们利用串联亲和纯化技术证实拟南芥GRXS17与大多数已知的胞质Fe-S组装(CIA)组分相关联。与具有缺陷CIA组分的突变植物类似,grxs17功能缺失突变体对DNA损伤表现出一定程度的超敏反应,且DNA损伤标记基因的表达升高。我们还发现几种假定的Fe-S客户蛋白直接与GRXS17结合,例如参与嘌呤补救途径的黄嘌呤脱氢酶1(XDH1),以及胞质硫尿苷酸酶亚基1和胞质硫尿苷酸酶亚基2,它们对于tRNA的5-甲氧基羰基甲基-2-硫尿苷(mcmsU)修饰的2-硫醇化步骤均至关重要。相应地,对grxs17-1突变体的分析表明嘌呤降解途径的通量受到干扰,并揭示它模拟了延伸因子亚基ELO3中的突变体,ELO3对mcm tRNA修饰步骤至关重要,尽管我们未发现grxs17-1突变体中XDH1活性或tRNA硫醇化明显降低。综上所述,我们的数据表明,与其他真核生物一样,植物胞质单硫醇GRXs与CIA复合体相关联,并有助于在未受挑战的条件下客户Fe-S蛋白的正常功能,但并非必不可少。