Li Haoran, Stümpfig Martin, Zhang Caiguo, An Xiuxiang, Stubbe JoAnne, Lill Roland, Huang Mingxia
From the Departments of Chemistry and.
Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany, and.
J Biol Chem. 2017 Jul 7;292(27):11445-11451. doi: 10.1074/jbc.M117.786178. Epub 2017 May 17.
How each metalloprotein assembles the correct metal at the proper binding site presents challenges to the cell. The di-iron enzyme ribonucleotide reductase (RNR) uses a diferric-tyrosyl radical (Fe-Y) cofactor to initiate nucleotide reduction. Assembly of this cofactor requires O, Fe, and a reducing equivalent. Recent studies show that RNR cofactor biosynthesis shares the same source of iron, in the form of [2Fe-2S]-GSH from the monothiol glutaredoxin Grx3/4, and the same electron source, in the form of the Dre2-Tah18 electron transfer chain, with the cytosolic iron-sulfur protein assembly (CIA) machinery required for maturation of [4Fe-4S] clusters in cytosolic and nuclear proteins. Here, we further investigated the interplay between the formation of the Fe-Y cofactor in RNR and the cellular iron-sulfur (Fe-S) protein biogenesis pathways by examining both the iron loading into the RNR β subunit and the RNR catalytic activity in yeast mutants depleted of individual components of the mitochondrial iron-sulfur cluster assembly (ISC) and the CIA machineries. We found that both iron loading and cofactor assembly in RNR are dependent on the ISC machinery. We also found that Dre2 is required for RNR cofactor formation but appears to be dispensable for iron loading. None of the CIA components downstream of Dre2 was required for RNR cofactor formation. Thus, the pathways for RNR and Fe-S cluster biogenesis bifurcate after the Dre2-Tah18 step. We conclude that RNR cofactor biogenesis requires the ISC machinery to mature the Grx3/4 and Dre2 Fe-S proteins, which then function in iron and electron delivery to RNR, respectively.
每种金属蛋白如何在合适的结合位点组装正确的金属,这给细胞带来了挑战。双铁酶核糖核苷酸还原酶(RNR)使用二价铁-酪氨酸自由基(Fe-Y)辅因子来启动核苷酸还原。这种辅因子的组装需要氧气、铁和一个还原当量。最近的研究表明,RNR辅因子生物合成与来自单硫醇谷氧还蛋白Grx3/4的[2Fe-2S]-谷胱甘肽(GSH)形式的铁源相同,并且与Dre2-Tah18电子传递链形式的相同电子源相同,这与胞质和核蛋白中[4Fe-4S]簇成熟所需的胞质铁硫蛋白组装(CIA)机制相同。在这里,我们通过检查铁加载到RNRβ亚基中的情况以及酵母突变体中RNR的催化活性,进一步研究了RNR中Fe-Y辅因子的形成与细胞铁硫(Fe-S)蛋白生物合成途径之间的相互作用,这些酵母突变体缺失了线粒体铁硫簇组装(ISC)和CIA机制的单个组分。我们发现RNR中的铁加载和辅因子组装都依赖于ISC机制。我们还发现Dre2是RNR辅因子形成所必需的,但似乎对于铁加载是可有可无的。Dre2下游的任何CIA组分对于RNR辅因子形成都不是必需的。因此,RNR和Fe-S簇生物合成途径在Dre2-Tah18步骤之后分叉。我们得出结论,RNR辅因子生物合成需要ISC机制来使Grx3/4和Dre2 Fe-S蛋白成熟,然后它们分别在向RNR的铁和电子传递中发挥作用。