Division of Biological and Environmental Science and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf 40225, Germany.
Plant Physiol. 2021 Jul 6;186(3):1632-1644. doi: 10.1093/plphys/kiab173.
Witchweeds (Striga spp.) and broomrapes (Orobanchaceae and Phelipanche spp.) are root parasitic plants that infest many crops in warm and temperate zones, causing enormous yield losses and endangering global food security. Seeds of these obligate parasites require rhizospheric, host-released stimulants to germinate, which opens up possibilities for controlling them by applying specific germination inhibitors or synthetic stimulants that induce lethal germination in the host's absence. To determine their effect on germination, root exudates or synthetic stimulants/inhibitors are usually applied to parasitic seeds in in vitro bioassays, followed by assessment of germination ratios. Although these protocols are very sensitive, the germination recording process is laborious, representing a challenge for researchers and impeding high-throughput screens. Here, we developed an automatic seed census tool to count and discriminate germinated seeds (GS) from non-GS. We combined deep learning, a powerful data-driven framework that can accelerate the procedure and increase its accuracy, for object detection with computer vision latest development based on the Faster Region-based Convolutional Neural Network algorithm. Our method showed an accuracy of 94% in counting seeds of Striga hermonthica and reduced the required time from approximately 5 min to 5 s per image. Our proposed software, SeedQuant, will be of great help for seed germination bioassays and enable high-throughput screening for germination stimulants/inhibitors. SeedQuant is an open-source software that can be further trained to count different types of seeds for research purposes.
菟丝子(Striga spp.)和列当(Orobanchaceae 和 Phelipanche spp.)是寄生在温暖和温带地区许多作物上的根寄生植物,会导致巨大的产量损失,危及全球粮食安全。这些专性寄生植物的种子需要根际、宿主释放的刺激物才能发芽,这为通过应用特定的发芽抑制剂或在宿主不存在的情况下诱导致死发芽的合成刺激物来控制它们提供了可能性。为了确定它们对发芽的影响,通常在体外生物测定中向寄生种子施加根分泌物或合成刺激物/抑制剂,然后评估发芽率。尽管这些方案非常敏感,但发芽记录过程很繁琐,这对研究人员来说是一个挑战,并阻碍了高通量筛选。在这里,我们开发了一种自动种子普查工具,用于计数和区分发芽种子(GS)和非 GS。我们结合了深度学习,这是一种强大的数据驱动框架,可以加速该过程并提高其准确性,用于基于 Faster Region-based Convolutional Neural Network 算法的计算机视觉最新发展的目标检测。我们的方法在计算 Striga hermonthica 的种子时准确率达到 94%,并将每个图像的所需时间从大约 5 分钟减少到 5 秒。我们提出的软件 SeedQuant 将极大地帮助种子发芽生物测定,并能够进行高通量筛选发芽刺激物/抑制剂。SeedQuant 是一个开源软件,可以进一步训练它来计数不同类型的种子用于研究目的。