Suppr超能文献

针对具有分类变量和随机缺失数据的验证性因子分析模型的成对似然估计。

Pairwise likelihood estimation for confirmatory factor analysis models with categorical variables and data that are missing at random.

作者信息

Katsikatsou Myrsini, Moustaki Irini, Jamil Haziq

机构信息

Horrothia FX, Falmouth, UK.

London School of Economics and Political Science, UK.

出版信息

Br J Math Stat Psychol. 2022 Feb;75(1):23-45. doi: 10.1111/bmsp.12243. Epub 2021 Apr 15.

Abstract

Methods for the treatment of item non-response in attitudinal scales and in large-scale assessments under the pairwise likelihood (PL) estimation framework and under a missing at random (MAR) mechanism are proposed. Under a full information likelihood estimation framework and MAR, ignorability of the missing data mechanism does not lead to biased estimates. However, this is not the case for pseudo-likelihood approaches such as the PL. We develop and study the performance of three strategies for incorporating missing values into confirmatory factor analysis under the PL framework, the complete-pairs (CP), the available-cases (AC) and the doubly robust (DR) approaches. The CP and AC require only a model for the observed data and standard errors are easy to compute. Doubly-robust versions of the PL estimation require a predictive model for the missing responses given the observed ones and are computationally more demanding than the AC and CP. A simulation study is used to compare the proposed methods. The proposed methods are employed to analyze the UK data on numeracy and literacy collected as part of the OECD Survey of Adult Skills.

摘要

提出了在成对似然(PL)估计框架和随机缺失(MAR)机制下处理态度量表和大规模评估中项目无应答的方法。在完全信息似然估计框架和MAR下,缺失数据机制的可忽略性不会导致有偏估计。然而,对于诸如PL这样的伪似然方法并非如此。我们开发并研究了在PL框架下将缺失值纳入验证性因子分析的三种策略的性能,即完全配对(CP)、可用案例(AC)和双重稳健(DR)方法。CP和AC只需要一个观测数据模型,并且标准误差易于计算。PL估计的双重稳健版本需要一个给定观测值的缺失应答预测模型,并且在计算上比AC和CP要求更高。使用模拟研究来比较所提出的方法。所提出的方法被用于分析作为经合组织成人技能调查一部分收集的英国算术和读写能力数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验