Suppr超能文献

不确定性启发的RGB-D显著目标检测

Uncertainty Inspired RGB-D Saliency Detection.

作者信息

Zhang Jing, Fan Deng-Ping, Dai Yuchao, Anwar Saeed, Saleh Fatemeh, Aliakbarian Sadegh, Barnes Nick

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5761-5779. doi: 10.1109/TPAMI.2021.3073564. Epub 2022 Aug 4.

Abstract

We propose the first stochastic framework to employ uncertainty for RGB-D saliency detection by learning from the data labeling process. Existing RGB-D saliency detection models treat this task as a point estimation problem by predicting a single saliency map following a deterministic learning pipeline. We argue that, however, the deterministic solution is relatively ill-posed. Inspired by the saliency data labeling process, we propose a generative architecture to achieve probabilistic RGB-D saliency detection which utilizes a latent variable to model the labeling variations. Our framework includes two main models: 1) a generator model, which maps the input image and latent variable to stochastic saliency prediction, and 2) an inference model, which gradually updates the latent variable by sampling it from the true or approximate posterior distribution. The generator model is an encoder-decoder saliency network. To infer the latent variable, we introduce two different solutions: i) a Conditional Variational Auto-encoder with an extra encoder to approximate the posterior distribution of the latent variable; and ii) an Alternating Back-Propagation technique, which directly samples the latent variable from the true posterior distribution. Qualitative and quantitative results on six challenging RGB-D benchmark datasets show our approach's superior performance in learning the distribution of saliency maps. The source code is publicly available via our project page: https://github.com/JingZhang617/UCNet.

摘要

我们提出了首个随机框架,通过从数据标注过程中学习,将不确定性用于RGB-D显著目标检测。现有的RGB-D显著目标检测模型通过遵循确定性学习流程预测单个显著图,将此任务视为点估计问题。然而,我们认为确定性解决方案相对不适定。受显著数据标注过程的启发,我们提出一种生成架构,以实现概率性RGB-D显著目标检测,该架构利用一个潜在变量对标注变化进行建模。我们的框架包括两个主要模型:1)一个生成器模型,它将输入图像和潜在变量映射到随机显著预测;2)一个推理模型,它通过从真实或近似后验分布中对潜在变量进行采样来逐步更新该变量。生成器模型是一个编码器-解码器显著网络。为了推断潜在变量,我们引入了两种不同的解决方案:i)一种条件变分自编码器,带有一个额外的编码器来近似潜在变量的后验分布;ii)一种交替反向传播技术,它直接从真实后验分布中对潜在变量进行采样。在六个具有挑战性的RGB-D基准数据集上的定性和定量结果表明,我们的方法在学习显著图分布方面具有卓越性能。源代码可通过我们的项目页面公开获取:https://github.com/JingZhang617/UCNet。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验