文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

胶质母细胞瘤通过表观遗传免疫编辑获得髓系相关转录程序,从而引发免疫逃逸。

Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion.

机构信息

Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK.

Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK.

出版信息

Cell. 2021 Apr 29;184(9):2454-2470.e26. doi: 10.1016/j.cell.2021.03.023. Epub 2021 Apr 14.


DOI:10.1016/j.cell.2021.03.023
PMID:33857425
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8099351/
Abstract

Glioblastoma multiforme (GBM) is an aggressive brain tumor for which current immunotherapy approaches have been unsuccessful. Here, we explore the mechanisms underlying immune evasion in GBM. By serially transplanting GBM stem cells (GSCs) into immunocompetent hosts, we uncover an acquired capability of GSCs to escape immune clearance by establishing an enhanced immunosuppressive tumor microenvironment. Mechanistically, this is not elicited via genetic selection of tumor subclones, but through an epigenetic immunoediting process wherein stable transcriptional and epigenetic changes in GSCs are enforced following immune attack. These changes launch a myeloid-affiliated transcriptional program, which leads to increased recruitment of tumor-associated macrophages. Furthermore, we identify similar epigenetic and transcriptional signatures in human mesenchymal subtype GSCs. We conclude that epigenetic immunoediting may drive an acquired immune evasion program in the most aggressive mesenchymal GBM subtype by reshaping the tumor immune microenvironment.

摘要

多形性胶质母细胞瘤(GBM)是一种侵袭性脑肿瘤,目前的免疫疗法方法都不成功。在这里,我们探讨了 GBM 中免疫逃避的机制。通过将 GBM 干细胞(GSCs)连续移植到免疫活性宿主中,我们发现 GSCs 通过建立增强的免疫抑制肿瘤微环境,获得了逃避免疫清除的能力。从机制上讲,这不是通过肿瘤亚克隆的遗传选择引起的,而是通过一种表观遗传免疫编辑过程,其中 GSCs 中的稳定转录和表观遗传变化在免疫攻击后被强制实施。这些变化引发了与髓样细胞相关的转录程序,导致肿瘤相关巨噬细胞的募集增加。此外,我们在人类间充质亚型 GSCs 中发现了类似的表观遗传和转录特征。我们得出结论,表观遗传免疫编辑可能通过重塑肿瘤免疫微环境,驱动最具侵袭性的间充质 GBM 亚型获得性免疫逃避程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/945ed35222ad/figs7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/dd07ef3e054d/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/0d6328cff6d3/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/70d16683a5f8/figs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/1c9cdaf30182/figs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/1dfdae040dc7/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/1d621bae644c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/52e7a20e4cba/figs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/50494ba8a0b6/figs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/6023b02c9e06/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/f572f3f47741/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/28aae7a22d0c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/ea5cdbdcc2f2/figs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/c8c17c93fcd0/figs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/5f7f4125c808/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/945ed35222ad/figs7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/dd07ef3e054d/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/0d6328cff6d3/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/70d16683a5f8/figs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/1c9cdaf30182/figs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/1dfdae040dc7/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/1d621bae644c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/52e7a20e4cba/figs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/50494ba8a0b6/figs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/6023b02c9e06/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/f572f3f47741/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/28aae7a22d0c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/ea5cdbdcc2f2/figs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/c8c17c93fcd0/figs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/5f7f4125c808/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/8099351/945ed35222ad/figs7.jpg

相似文献

[1]
Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion.

Cell. 2021-4-29

[2]
Glioblastoma Stem Cells: MAP17 as a Novel Predictive Biomarker and Therapeutic Target Associated with Quiescence and Immune Evasion.

Discov Med. 2025-1

[3]
The dual role of POSTN in maintaining glioblastoma stem cells and the immunosuppressive phenotype of microglia in glioblastoma.

J Exp Clin Cancer Res. 2024-9-4

[4]
Lactate reprograms glioblastoma immunity through CBX3-regulated histone lactylation.

J Clin Invest. 2024-11-15

[5]
Hypoxia-induced TREM1 promotes mesenchymal-like states of glioma stem cells via alternatively activating tumor-associated macrophages.

Cancer Lett. 2024-5-28

[6]
Expression profiling of single cells and patient cohorts identifies multiple immunosuppressive pathways and an altered NK cell phenotype in glioblastoma.

Clin Exp Immunol. 2019-12-16

[7]
Glioblastoma Stem Cells at the Nexus of Tumor Heterogeneity, Immune Evasion, and Therapeutic Resistance.

Cells. 2025-4-9

[8]
Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.

Oncotarget. 2015-9-22

[9]
Comprehensive genomic profiling of glioblastoma tumors, BTICs, and xenografts reveals stability and adaptation to growth environments.

Proc Natl Acad Sci U S A. 2019-8-30

[10]
Elevated α-1,2-mannosidase MAN1C1 in glioma stem cells and its implications for immunological changes and prognosis in glioma patients.

Sci Rep. 2024-9-27

引用本文的文献

[1]
Axonal injury is a targetable driver of glioblastoma progression.

Nature. 2025-8-20

[2]
Epigenetic regulation of cancer stemness.

Signal Transduct Target Ther. 2025-8-1

[3]
A novel organoid model retaining the glioma microenvironment for personalized drug screening and therapeutic evaluation.

Bioact Mater. 2025-7-14

[4]
IDENTIFICATION OF DISEASE-SPECIFIC VULNERABILITY STATES AT THE SINGLE-CELL LEVEL.

bioRxiv. 2025-6-8

[5]
Interactions between glioblastoma and myeloid cells.

Front Cell Dev Biol. 2025-6-24

[6]
Advances in Cellular Immune Theranostic Approaches for Glioblastoma: Current Trends and Future Directions.

Cancer Innov. 2025-7-3

[7]
Transglutaminase 2 function in glioblastoma tumor efferocytosis.

Cell Death Dis. 2025-7-3

[8]
TRIM21 functions as an oncogene in glioblastoma by transactivating FOSL1 and promoting the ubiquitination of p27.

Cell Commun Signal. 2025-7-1

[9]
Emerging Chemotherapy Targets: Insights from Advances in Glioma Treatment.

Biomedicines. 2025-6-12

[10]
Recent advances in molecular mechanisms of microRNAs in pathogenesis and resistance of treatment in glioblastoma.

Clin Transl Oncol. 2025-6-24

本文引用的文献

[1]
Gradient of Developmental and Injury Response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity.

Nat Cancer. 2021-2

[2]
Bystander IFN-γ activity promotes widespread and sustained cytokine signaling altering the tumor microenvironment.

Nat Cancer. 2020-3

[3]
Long-distance modulation of bystander tumor cells by CD8 T cell-secreted IFNγ.

Nat Cancer. 2020-3

[4]
Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells.

Cell. 2020-6-25

[5]
The Emerging Role of Myeloid-Derived Suppressor Cells in the Glioma Immune Suppressive Microenvironment.

Front Immunol. 2020

[6]
Midkine activation of CD8 T cells establishes a neuron-immune-cancer axis responsible for low-grade glioma growth.

Nat Commun. 2020-5-1

[7]
Tumor-Specific T Cell Activation in Malignant Brain Tumors.

Front Immunol. 2020

[8]
Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma.

Nat Med. 2019-12-23

[9]
The Phenotypes of Proliferating Glioblastoma Cells Reside on a Single Axis of Variation.

Cancer Discov. 2019-9-25

[10]
Experimental models and tools to tackle glioblastoma.

Dis Model Mech. 2019-9-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索