Suppr超能文献

在 COVID-19 大流行期间,现象学模型在提供加拿大近期病例预测方面的表现:2020 年 3 月-4 月。

The performance of phenomenological models in providing near-term Canadian case projections in the midst of the COVID-19 pandemic: March - April, 2020.

机构信息

Infectious Disease Prevention and Control Branch, Public Health Agency of Canada, 370 Speedvale Ave W., Guelph, ON, N1H 7M7, Canada.

Infectious Disease Prevention and Control Branch, Public Health Agency of Canada, 130 Colonnade R., Ottawa, ON, K1A 0K9, Canada.

出版信息

Epidemics. 2021 Jun;35:100457. doi: 10.1016/j.epidem.2021.100457. Epub 2021 Mar 19.

Abstract

BACKGROUND

The COVID-19 pandemic has had an unprecedented impact on citizens and health care systems globally. Valid near-term projections of cases are required to inform the escalation, maintenance and de-escalation of public health measures, and for short-term health care resource planning.

METHODS

Near-term case and epidemic growth rate projections for Canada were estimated using three phenomenological models: the logistic model, Generalized Richard's model (GRM) and a modified Incidence Decay and Exponential Adjustment (m-IDEA) model. Throughout the COVID-19 epidemic in Canada, these models have been validated against official national epidemiological data on an ongoing basis.

RESULTS

The best-fit models estimated that the number of COVID-19 cases predicted to be reported in Canada as of April 1, 2020 and May 1, 2020 would be 11,156 (90 % prediction interval: 9,156-13,905) and 54,745 (90 % prediction interval: 54,252-55,239). The three models varied in their projections and their performance over the first seven weeks of their implementation. Both the logistic model and GRM under-predicted cases reported a week following the projection date in nearly all instances. The logistic model performed best at the early stages, the m-IDEA model performed best at the later stages, and the GRM performed most consistently during the full period assessed.

CONCLUSIONS

All three models have yielded qualitatively comparable near-term forecasts of cases and epidemic growth for Canada. Under or over-estimation of projected cases and epidemic growth by these models could be associated with changes in testing policies and/or public health measures. Simple forecasting models can be invaluable in projecting the changes in trajectory of subsequent waves of cases to provide timely information to support the pandemic response.

摘要

背景

COVID-19 大流行对全球公民和医疗保健系统造成了前所未有的影响。需要进行有效的短期病例预测,以便为公共卫生措施的升级、维持和降级提供信息,并为短期医疗保健资源规划提供信息。

方法

使用三种现象学模型对加拿大的近期病例和流行增长率进行了估计:逻辑模型、广义理查德模型(GRM)和改进的发病率衰减和指数调整模型(m-IDEA)。在整个 COVID-19 大流行期间,这些模型一直针对加拿大官方国家流行病学数据进行持续验证。

结果

最佳拟合模型估计,截至 2020 年 4 月 1 日和 2020 年 5 月 1 日,预计在加拿大报告的 COVID-19 病例数将分别为 11156(90%预测区间:9156-13905)和 54745(90%预测区间:54252-55239)。这三个模型在其预测和实施的前七周的表现上有所不同。在几乎所有情况下,逻辑模型和 GRM 都在预测日期后的一周内低估了报告的病例数。逻辑模型在早期阶段表现最好,m-IDEA 模型在后期阶段表现最好,而 GRM 在整个评估期间表现最稳定。

结论

所有三个模型都对加拿大的病例和流行增长率进行了定性上可比的短期预测。这些模型对预测病例和流行增长率的低估或高估可能与检测政策和/或公共卫生措施的变化有关。简单的预测模型可以在预测后续病例波的变化轨迹方面非常有价值,以便及时提供信息,支持大流行应对。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验