Suppr超能文献

南非报告的 COVID-19 病例和死亡总数的短期实时预测:一种数据驱动的方法。

Short-term real-time prediction of total number of reported COVID-19 cases and deaths in South Africa: a data driven approach.

机构信息

Biostatistics Research Unit, South African Medical Research Council, Cape Town, South Africa.

Censtat, Hasselt University, Hasselt, Belgium.

出版信息

BMC Med Res Methodol. 2021 Jan 11;21(1):15. doi: 10.1186/s12874-020-01165-x.

Abstract

BACKGROUND

The rising burden of the ongoing COVID-19 epidemic in South Africa has motivated the application of modeling strategies to predict the COVID-19 cases and deaths. Reliable and accurate short and long-term forecasts of COVID-19 cases and deaths, both at the national and provincial level, are a key aspect of the strategy to handle the COVID-19 epidemic in the country.

METHODS

In this paper we apply the previously validated approach of phenomenological models, fitting several non-linear growth curves (Richards, 3 and 4 parameter logistic, Weibull and Gompertz), to produce short term forecasts of COVID-19 cases and deaths at the national level as well as the provincial level. Using publicly available daily reported cumulative case and death data up until 22 June 2020, we report 5, 10, 15, 20, 25 and 30-day ahead forecasts of cumulative cases and deaths. All predictions are compared to the actual observed values in the forecasting period.

RESULTS

We observed that all models for cases provided accurate and similar short-term forecasts for a period of 5 days ahead at the national level, and that the three and four parameter logistic growth models provided more accurate forecasts than that obtained from the Richards model 10 days ahead. However, beyond 10 days all models underestimated the cumulative cases. Our forecasts across the models predict an additional 23,551-26,702 cases in 5 days and an additional 47,449-57,358 cases in 10 days. While the three parameter logistic growth model provided the most accurate forecasts of cumulative deaths within the 10 day period, the Gompertz model was able to better capture the changes in cumulative deaths beyond this period. Our forecasts across the models predict an additional 145-437 COVID-19 deaths in 5 days and an additional 243-947 deaths in 10 days.

CONCLUSIONS

By comparing both the predictions of deaths and cases to the observed data in the forecasting period, we found that this modeling approach provides reliable and accurate forecasts for a maximum period of 10 days ahead.

摘要

背景

南非持续的 COVID-19 疫情负担不断增加,促使人们应用建模策略来预测 COVID-19 病例和死亡人数。在国家和省级层面上,对 COVID-19 病例和死亡人数进行可靠和准确的短期和长期预测是该国应对 COVID-19 疫情战略的关键方面。

方法

在本文中,我们应用先前经过验证的现象学模型方法,拟合了几种非线性增长曲线(Richards、3 参数逻辑、4 参数逻辑、Weibull 和 Gompertz),以对国家层面以及省级层面的 COVID-19 病例和死亡人数进行短期预测。使用截至 2020 年 6 月 22 日的公开可用的每日报告累计病例和死亡数据,我们报告了 5、10、15、20、25 和 30 天的累计病例和死亡预测。所有预测均与预测期内的实际观测值进行比较。

结果

我们观察到,所有病例模型都能在国家层面上准确地预测 5 天内的短期病例,3 参数逻辑和 4 参数逻辑增长模型的预测比 Richards 模型 10 天内的预测更准确。然而,超过 10 天后,所有模型都低估了累计病例数。我们的预测显示,在 5 天内,模型预测还会增加 23551-26702 例病例,在 10 天内还会增加 47449-57358 例病例。虽然 3 参数逻辑增长模型在 10 天内对累计死亡人数的预测最为准确,但 Gompertz 模型能够更好地捕捉到该期间后累计死亡人数的变化。我们的预测显示,在 5 天内,模型预测还会增加 145-437 例 COVID-19 死亡,在 10 天内还会增加 243-947 例死亡。

结论

通过将死亡和病例的预测与预测期内的观测数据进行比较,我们发现,这种建模方法可提供最长 10 天的可靠和准确预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/7798210/c4e30f542210/12874_2020_1165_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验