Suppr超能文献

一种用于短期预测疫情轨迹的集成子疫情建模框架:在美国新冠肺炎疫情中的应用。

An ensemble -sub-epidemic modeling framework for short-term forecasting epidemic trajectories: Application to the COVID-19 pandemic in the USA.

作者信息

Chowell Gerardo, Dahal Sushma, Tariq Amna, Roosa Kimberlyn, Hyman James M, Luo Ruiyan

机构信息

Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA.

Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.

出版信息

medRxiv. 2022 Jun 21:2022.06.19.22276608. doi: 10.1101/2022.06.19.22276608.

Abstract

UNLABELLED

We analyze an ensemble of -sub-epidemic modeling for forecasting the trajectory of epidemics and pandemics. These ensemble modeling approaches, and models that integrate sub-epidemics to capture complex temporal dynamics, have demonstrated powerful forecasting capability. This modeling framework can characterize complex epidemic patterns, including plateaus, epidemic resurgences, and epidemic waves characterized by multiple peaks of different sizes. We systematically assess their calibration and short-term forecasting performance in short-term forecasts for the COVID-19 pandemic in the USA from late April 2020 to late February 2022. We compare their performance with two commonly used statistical ARIMA models. The best fit sub-epidemic model and three ensemble models constructed using the top-ranking sub-epidemic models consistently outperformed the ARIMA models in terms of the weighted interval score (WIS) and the coverage of the 95% prediction interval across the 10-, 20-, and 30-day short-term forecasts. In the 30-day forecasts, the average WIS ranged from 377.6 to 421.3 for the sub-epidemic models, whereas it ranged from 439.29 to 767.05 for the ARIMA models. Across 98 short-term forecasts, the ensemble model incorporating the top four ranking sub-epidemic models (Ensemble(4)) outperformed the (log) ARIMA model 66.3% of the time, and the ARIMA model 69.4% of the time in 30-day ahead forecasts in terms of the WIS. Ensemble(4) consistently yielded the best performance in terms of the metrics that account for the uncertainty of the predictions. This framework could be readily applied to investigate the spread of epidemics and pandemics beyond COVID-19, as well as other dynamic growth processes found in nature and society that would benefit from short-term predictions.

SUMMARY

The COVID-19 pandemic has highlighted the urgent need to develop reliable tools to forecast the trajectory of epidemics and pandemics in near real-time. We describe and apply an ensemble -sub-epidemic modeling framework for forecasting the trajectory of epidemics and pandemics. We systematically assess its calibration and short-term forecasting performance in weekly 10-30 days ahead forecasts for the COVID-19 pandemic in the USA from late April 2020 to late February 2022 and compare its performance with two different statistical ARIMA models. This framework demonstrated reliable forecasting performance and substantially outcompeted the ARIMA models. The forecasting performance was consistently best for the ensemble sub-epidemic models incorporating a higher number of top-ranking sub-epidemic models. The ensemble model incorporating the top four ranking sub-epidemic models consistently yielded the best performance, particularly in terms of the coverage rate of the 95% prediction interval and the weighted interval score. This framework can be applied to forecast other growth processes found in nature and society including the spread of information through social media.

摘要

未标注

我们分析了一组用于预测流行病和大流行病轨迹的子疫情建模方法。这些集成建模方法以及整合子疫情以捕捉复杂时间动态的模型,已展现出强大的预测能力。该建模框架能够刻画复杂的疫情模式,包括平稳期、疫情复发以及以不同大小的多个峰值为特征的疫情波。我们系统地评估了它们在2020年4月下旬至2022年2月下旬对美国新冠疫情进行短期预测时的校准和短期预测性能。我们将它们的性能与两个常用的统计自回归整合移动平均(ARIMA)模型进行了比较。在10天、20天和30天的短期预测中,最佳拟合子疫情模型以及使用排名靠前的子疫情模型构建的三个集成模型在加权区间得分(WIS)和95%预测区间的覆盖率方面始终优于ARIMA模型。在30天的预测中,子疫情模型的平均WIS范围为377.6至421.3,而ARIMA模型的平均WIS范围为439.29至767.05。在98次短期预测中,纳入排名前四的子疫情模型的集成模型(Ensemble(4))在WIS方面,在提前30天的预测中,有66.3%的时间优于(对数)ARIMA模型,有69.4%的时间优于ARIMA模型。就考虑预测不确定性的指标而言,Ensemble(4)始终表现最佳。该框架可轻松应用于研究新冠疫情之外的流行病和大流行病的传播,以及自然界和社会中其他受益于短期预测的动态增长过程。

总结

新冠疫情凸显了迫切需要开发可靠工具以近乎实时地预测流行病和大流行病轨迹的需求。我们描述并应用了一个用于预测流行病和大流行病轨迹的集成子疫情建模框架。我们系统地评估了它在2020年4月下旬至2022年2月下旬对美国新冠疫情提前10 - 30天的每周预测中的校准和短期预测性能,并将其性能与两个不同的统计ARIMA模型进行了比较。该框架展现出可靠的预测性能,并且在很大程度上优于ARIMA模型。对于纳入更多排名靠前的子疫情模型的集成子疫情模型,预测性能始终最佳。纳入排名前四的子疫情模型的集成模型始终表现最佳,特别是在95%预测区间的覆盖率和加权区间得分方面。该框架可应用于预测自然界和社会中其他的增长过程,包括通过社交媒体传播的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e56/9258290/50d3bf26b4a4/nihpp-2022.06.19.22276608v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验