Suppr超能文献

使用机器学习贝叶斯网络模型预测私人井水 GenX 污染风险。

Predicting the risk of GenX contamination in private well water using a machine-learned Bayesian network model.

机构信息

Department of Environmental and Occupational Health, Indiana University, Bloomington, IN 47405, United States.

Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill 27516, United States.

出版信息

J Hazard Mater. 2021 Jun 5;411:125075. doi: 10.1016/j.jhazmat.2021.125075. Epub 2021 Jan 7.

Abstract

Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants that pose significant challenges in mechanistic fate and transport modeling due to their diverse and complex chemical characteristics. Machine learning provides a novel approach for predicting the spatial distribution of PFAS in the environment. We used spatial location information to link PFAS measurements from 1207 private drinking water wells around a fluorochemical manufacturing facility to a mechanistic model of PFAS air deposition and to publicly available data on soil, land use, topography, weather, and proximity to multiple PFAS sources. We used the resulting linked data set to train a Bayesian network model to predict the risk that GenX, a member of the PFAS class, would exceed a state provisional health goal (140 ng/L) in private well water. The model had high accuracy (ROC curve index for five-fold cross-validation of 0.85, 90% CI 0.84-0.87). Among factors significantly associated with GenX risk in private wells, the most important was the historic rate of atmospheric deposition of GenX from the fluorochemical manufacturing facility. The model output was used to generate spatial risk predictions for the study area to aid in risk assessment, environmental investigations, and targeted public health interventions.

摘要

全氟和多氟烷基物质(PFAS)是新兴的污染物,由于其多样且复杂的化学特性,给机制命运和传输建模带来了重大挑战。机器学习为预测环境中 PFAS 的空间分布提供了一种新方法。我们使用空间位置信息将来自氟化学制造设施周围 1207 口私人饮用水井的 PFAS 测量值与 PFAS 空气沉积的机制模型以及关于土壤、土地利用、地形、天气和与多个 PFAS 源的接近度的公开可用数据联系起来。我们使用由此产生的关联数据集来训练贝叶斯网络模型,以预测 GenX(PFAS 类的一员)在私人水井水中超过州暂定健康目标(140ng/L)的风险。该模型具有很高的准确性(五重交叉验证的 ROC 曲线指数为 0.85,90%CI 为 0.84-0.87)。在与私人井中 GenX 风险显著相关的因素中,最重要的是来自氟化学制造设施的 GenX 大气沉积的历史速率。模型输出用于生成研究区域的空间风险预测,以帮助风险评估、环境调查和有针对性的公共卫生干预。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验