Yaghoobian Samaneh, Ramirez-Ubillus Manuel A, Zhai Lei, Hwang Jae-Hoon
Department of Building, Civil and Environmental Engineering, Concordia University Montreal QC H3G 1M8 Canada
NanoScience Technology Center, Department of Chemistry, University of Central Florida Florida USA
Chem Sci. 2025 Jul 2;16(30):13564-13573. doi: 10.1039/d5sc01624j. eCollection 2025 Jul 30.
Per- and polyfluoroalkyl substances (PFAS) are highly persistent synthetic chemicals that pose severe environmental and health risks, prompting increasingly stringent regulations. The recent crises caused by PFAS contamination underscore the urgent need for rapid, sensitive, and on-site monitoring, along with effective removal and degradation from water sources. To address these challenges, a key future direction involves integrating detection with remediation, shifting from a singular focus to a comprehensive approach that facilitates both monitoring and elimination. This integration enhances cost-effectiveness, real-time process control, and treatment efficiency, ensuring proactive PFAS mitigation. Additionally, artificial intelligence (AI) and machine learning (ML) are emerging as powerful data-driven tools for optimizing detection sensitivity and treatment performance, offering new opportunities for improving integrated PFAS management systems. This perspective critically evaluates the advancements, challenges, and future potential of integrated detection-remediation strategies for scalable PFAS management in water systems.
全氟和多氟烷基物质(PFAS)是具有高度持久性的合成化学品,会带来严重的环境和健康风险,这促使监管日益严格。近期由PFAS污染引发的危机凸显了对快速、灵敏和现场监测的迫切需求,以及从水源中有效去除和降解PFAS的需求。为应对这些挑战,未来的一个关键方向是将检测与修复相结合,从单一关注转向促进监测和消除的综合方法。这种整合提高了成本效益、实时过程控制和处理效率,确保对PFAS进行积极的缓解。此外,人工智能(AI)和机器学习(ML)正成为强大的数据驱动工具,用于优化检测灵敏度和处理性能,为改进综合PFAS管理系统提供了新机会。本文批判性地评估了用于水系统中可扩展PFAS管理的综合检测-修复策略的进展、挑战和未来潜力。