Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany.
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA.
Science. 2021 Apr 16;372(6539):276-279. doi: 10.1126/science.abc6363.
Geometrical frustration, quantum entanglement, and disorder may prevent long-range ordering of localized spins with strong exchange interactions, resulting in an exotic state of matter. κ-(BEDT-TTF)Cu(CN) is considered the prime candidate for this elusive quantum spin liquid state, but its ground-state properties remain puzzling. We present a multifrequency electron spin resonance (ESR) study down to millikelvin temperatures, revealing a rapid drop of the spin susceptibility at 6 kelvin. This opening of a spin gap, accompanied by structural modifications, is consistent with the formation of a valence bond solid ground state. We identify an impurity contribution to the ESR response that becomes dominant when the intrinsic spins form singlets. Probing the electrons directly manifests the pivotal role of defects for the low-energy properties of quantum spin systems without magnetic order.
几何阻挫、量子纠缠和无序可能会阻止具有强交换相互作用的局域自旋的长程有序化,从而导致物质呈现出一种奇特的状态。κ-(BEDT-TTF)Cu(CN) 被认为是这种难以捉摸的量子自旋液体状态的首要候选物质,但它的基态性质仍然令人费解。我们进行了多频电子自旋共振 (ESR)研究,直至毫开尔文温度,发现自旋磁化率在 6 开尔文时迅速下降。这种自旋能隙的打开伴随着结构的改变,与价带固体基态的形成是一致的。我们确定了 ESR 响应中的杂质贡献,当本征自旋形成单子时,这种贡献变得占主导地位。直接探测电子表明,对于没有磁序的量子自旋系统,缺陷对于低能性质起着关键作用。