Cai Xun, Han Zhaoyu, Li Zi-Xiang, Kivelson Steven A, Yao Hong
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Department of Physics, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2025 Aug 19;122(33):e2426111122. doi: 10.1073/pnas.2426111122. Epub 2025 Aug 11.
A quantum spin liquid (QSL) is an exotic insulating phase with emergent gauge fields and fractionalized excitations. However, the unambiguous demonstration of the existence of a QSL in a "nonengineered" microscopic model (or in any material) remains challenging. Here, using numerically exact sign-problem-free quantum Monte Carlo simulations, we show that a QSL arises in a nonengineered electron-phonon model. Specifically, we investigate the ground-state phase diagram of the bond Su-Schrieffer-Heeger model on a 2D triangular lattice at (one electron per site), which we show includes a QSL phase which is fully gapped, exhibits no symmetry-breaking order, and supports deconfined fractionalized holon excitations. This suggests promising routes for finding QSLs in realistic materials and high- superconductivity by lightly doping them.
量子自旋液体(QSL)是一种具有涌现规范场和分数化激发的奇异绝缘相。然而,在“非人工设计”的微观模型(或任何材料)中明确证明QSL的存在仍然具有挑战性。在此,我们使用数值精确且无符号问题的量子蒙特卡罗模拟表明,在一个非人工设计的电子 - 声子模型中会出现QSL。具体而言,我们研究了二维三角形晶格上键控Su - Schrieffer - Heeger模型(每个格点一个电子)的基态相图,结果表明该相图包含一个完全能隙的QSL相,该相不表现出对称性破缺序,并且支持无约束的分数化空穴子激发。这为在实际材料中寻找QSL以及通过对其进行轻掺杂实现高温超导指明了有前景的途径。