Suppr超能文献

在16p11.2缺失小鼠模型中,对新生儿发声中预测青春期后社会行为的变量进行计算识别。

Computational identification of variables in neonatal vocalizations predictive for postpubertal social behaviors in a mouse model of 16p11.2 deletion.

作者信息

Nakamura Mitsuteru, Ye Kenny, E Silva Mariel Barbachan, Yamauchi Takahira, Hoeppner Daniel J, Fayyazuddin Amir, Kang Gina, Yuda Emi A, Nagashima Masako, Enomoto Shingo, Hiramoto Takeshi, Sharp Richard, Kaneko Itaru, Tajinda Katsunori, Adachi Megumi, Mihara Takuma, Tokuno Shinichi, Geyer Mark A, Broin Pilib Ó, Matsumoto Mitsuyuki, Hiroi Noboru

机构信息

Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.

Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.

出版信息

Mol Psychiatry. 2021 Nov;26(11):6578-6588. doi: 10.1038/s41380-021-01089-y. Epub 2021 Apr 15.

Abstract

Autism spectrum disorder (ASD) is often signaled by atypical cries during infancy. Copy number variants (CNVs) provide genetically identifiable cases of ASD, but how early atypical cries predict a later onset of ASD among CNV carriers is not understood in humans. Genetic mouse models of CNVs have provided a reliable tool to experimentally isolate the impact of CNVs and identify early predictors for later abnormalities in behaviors relevant to ASD. However, many technical issues have confounded the phenotypic characterization of such mouse models, including systematically biased genetic backgrounds and weak or absent behavioral phenotypes. To address these issues, we developed a coisogenic mouse model of human proximal 16p11.2 hemizygous deletion and applied computational approaches to identify hidden variables within neonatal vocalizations that have predictive power for postpubertal dimensions relevant to ASD. After variables of neonatal vocalizations were selected by least absolute shrinkage and selection operator (Lasso), random forest, and Markov model, regression models were constructed to predict postpubertal dimensions relevant to ASD. While the average scores of many standard behavioral assays designed to model dimensions did not differentiate a model of 16p11.2 hemizygous deletion and wild-type littermates, specific call types and call sequences of neonatal vocalizations predicted individual variability of postpubertal reciprocal social interaction and olfactory responses to a social cue in a genotype-specific manner. Deep-phenotyping and computational analyses identified hidden variables within neonatal social communication that are predictive of postpubertal behaviors.

摘要

自闭症谱系障碍(ASD)在婴儿期通常表现为非典型哭声。拷贝数变异(CNV)可提供具有遗传可识别性的ASD病例,但在人类中,非典型哭声如何早期预测CNV携带者日后患ASD并不清楚。CNV的基因小鼠模型提供了一个可靠的工具,可通过实验分离CNV的影响,并识别与ASD相关的后期行为异常的早期预测指标。然而,许多技术问题混淆了此类小鼠模型的表型特征,包括系统性偏倚的遗传背景以及微弱或不存在的行为表型。为了解决这些问题,我们开发了一种人类近端16p11.2半合子缺失的同基因小鼠模型,并应用计算方法来识别新生儿发声中对与ASD相关的青春期后维度具有预测能力的隐藏变量。通过最小绝对收缩和选择算子(Lasso)、随机森林和马尔可夫模型选择新生儿发声的变量后,构建回归模型以预测与ASD相关的青春期后维度。虽然许多旨在模拟相关维度的标准行为测试的平均分数并未区分16p11.2半合子缺失模型和野生型同窝小鼠,但新生儿发声的特定叫声类型和叫声序列以基因型特异性方式预测了青春期后相互社交互动的个体差异以及对社交线索的嗅觉反应。深度表型分析和计算分析确定了新生儿社交交流中可预测青春期后行为的隐藏变量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验