Liu Sensen, Sock Noah M, Ching ShiNung
Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA.
Presently at the California Institute of Technology, Pasadena, CA, USA.
Proc Am Control Conf. 2018 Jun;2018. doi: 10.23919/acc.2018.8431158. Epub 2018 Aug 16.
We consider the problem of controlling populations of interconnected neurons using extrinsic stimulation. Such a problem, which is relevant to applications in both basic neuroscience as well as brain medicine, is challenging due to the nonlinearity of neuronal dynamics and the highly unpredictable structure of underlying neuronal networks. Compounding this difficulty is the fact that most neurostimulation technologies offer a single degree of freedom to actuate tens to hundreds of interconnected neurons. To meet these challenges, here we consider an adaptive, learning-based approach to controlling neural spike trains. Rather than explicitly modeling neural dynamics and designing optimal controls, we instead synthesize a so-called control network (CONET) that interacts with the spiking network by maximizing the Shannon mutual information between it and the realized spiking outputs. Thus, the CONET learns a representation of the spiking network that subsequently allows it to learn suitable control signals through a reinforcement-type mechanism. We demonstrate feasibility of the approach by controlling networks of stochastic spiking neurons, wherein desired patterns are induced for neuron-to-actuator ratios in excess of 10 to 1.
我们考虑使用外部刺激来控制相互连接的神经元群体的问题。这样一个在基础神经科学和脑医学应用中都相关的问题,由于神经元动力学的非线性以及底层神经网络高度不可预测的结构而具有挑战性。使这一困难更加复杂的是,大多数神经刺激技术提供单一自由度来驱动数十到数百个相互连接的神经元。为应对这些挑战,我们在此考虑一种基于学习的自适应方法来控制神经脉冲序列。我们并非明确地对神经动力学进行建模并设计最优控制,而是合成一个所谓的控制网络(CONET),它通过最大化自身与实际脉冲输出之间的香农互信息来与脉冲网络相互作用。因此,CONET学习脉冲网络的一种表示,随后通过强化型机制使其能够学习合适的控制信号。我们通过控制随机脉冲神经元网络来证明该方法的可行性,其中对于超过10比1的神经元与执行器比例诱导出了期望的模式。