Suppr超能文献

基于学习的神经放电控制方法。

Learning-based Approaches for Controlling Neural Spiking.

作者信息

Liu Sensen, Sock Noah M, Ching ShiNung

机构信息

Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA.

Presently at the California Institute of Technology, Pasadena, CA, USA.

出版信息

Proc Am Control Conf. 2018 Jun;2018. doi: 10.23919/acc.2018.8431158. Epub 2018 Aug 16.

Abstract

We consider the problem of controlling populations of interconnected neurons using extrinsic stimulation. Such a problem, which is relevant to applications in both basic neuroscience as well as brain medicine, is challenging due to the nonlinearity of neuronal dynamics and the highly unpredictable structure of underlying neuronal networks. Compounding this difficulty is the fact that most neurostimulation technologies offer a single degree of freedom to actuate tens to hundreds of interconnected neurons. To meet these challenges, here we consider an adaptive, learning-based approach to controlling neural spike trains. Rather than explicitly modeling neural dynamics and designing optimal controls, we instead synthesize a so-called control network (CONET) that interacts with the spiking network by maximizing the Shannon mutual information between it and the realized spiking outputs. Thus, the CONET learns a representation of the spiking network that subsequently allows it to learn suitable control signals through a reinforcement-type mechanism. We demonstrate feasibility of the approach by controlling networks of stochastic spiking neurons, wherein desired patterns are induced for neuron-to-actuator ratios in excess of 10 to 1.

摘要

我们考虑使用外部刺激来控制相互连接的神经元群体的问题。这样一个在基础神经科学和脑医学应用中都相关的问题,由于神经元动力学的非线性以及底层神经网络高度不可预测的结构而具有挑战性。使这一困难更加复杂的是,大多数神经刺激技术提供单一自由度来驱动数十到数百个相互连接的神经元。为应对这些挑战,我们在此考虑一种基于学习的自适应方法来控制神经脉冲序列。我们并非明确地对神经动力学进行建模并设计最优控制,而是合成一个所谓的控制网络(CONET),它通过最大化自身与实际脉冲输出之间的香农互信息来与脉冲网络相互作用。因此,CONET学习脉冲网络的一种表示,随后通过强化型机制使其能够学习合适的控制信号。我们通过控制随机脉冲神经元网络来证明该方法的可行性,其中对于超过10比1的神经元与执行器比例诱导出了期望的模式。

相似文献

1
Learning-based Approaches for Controlling Neural Spiking.基于学习的神经放电控制方法。
Proc Am Control Conf. 2018 Jun;2018. doi: 10.23919/acc.2018.8431158. Epub 2018 Aug 16.
3
Stochastic optimal control of single neuron spike trains.单个神经元放电序列的随机最优控制
J Neural Eng. 2014 Aug;11(4):046004. doi: 10.1088/1741-2560/11/4/046004. Epub 2014 Jun 3.
7
Stochastic variational learning in recurrent spiking networks.递归尖峰网络中的随机变分学习。
Front Comput Neurosci. 2014 Apr 4;8:38. doi: 10.3389/fncom.2014.00038. eCollection 2014.

引用本文的文献

1
Learning to Control Neurons using Aggregated Measurements.利用聚合测量学习控制神经元
Proc Am Control Conf. 2020 Jul;2020:4028-4033. doi: 10.23919/acc45564.2020.9147426. Epub 2020 Jul 27.

本文引用的文献

1
Control Analysis and Design for Statistical Models of Spiking Networks.脉冲神经网络统计模型的控制分析与设计
IEEE Trans Control Netw Syst. 2018 Sep;5(3):1146-1156. doi: 10.1109/TCNS.2017.2687824. Epub 2017 Mar 27.
3
Recurrent Information Optimization with Local, Metaplastic Synaptic Dynamics.
Neural Comput. 2017 Sep;29(9):2528-2552. doi: 10.1162/NECO_a_00993. Epub 2017 Jun 9.
4
Closed-loop and activity-guided optogenetic control.闭环与活动引导的光遗传学控制。
Neuron. 2015 Apr 8;86(1):106-39. doi: 10.1016/j.neuron.2015.03.034.
6
Efficient model learning methods for actor-critic control.用于演员-评论家控制的高效模型学习方法。
IEEE Trans Syst Man Cybern B Cybern. 2012 Jun;42(3):591-602. doi: 10.1109/TSMCB.2011.2170565. Epub 2011 Dec 7.
8
Optimal design of minimum-power stimuli for phase models of neuron oscillators.神经元振荡器相位模型的最小功率刺激的优化设计。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 1):061916. doi: 10.1103/PhysRevE.83.061916. Epub 2011 Jun 27.
9
Designing optimal stimuli to control neuronal spike timing.设计最优刺激来控制神经元尖峰时间。
J Neurophysiol. 2011 Aug;106(2):1038-53. doi: 10.1152/jn.00427.2010. Epub 2011 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验