Suppr超能文献

闭环与活动引导的光遗传学控制。

Closed-loop and activity-guided optogenetic control.

作者信息

Grosenick Logan, Marshel James H, Deisseroth Karl

机构信息

Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA; Neurosciences Program, Stanford University, Stanford, CA 94305 USA.

Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA.

出版信息

Neuron. 2015 Apr 8;86(1):106-39. doi: 10.1016/j.neuron.2015.03.034.

Abstract

Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals.

摘要

光学操纵和神经活动观测技术的进步为神经回路动力学的闭环和活动引导光学控制的广泛应用奠定了基础。通过光遗传学实现闭环(即基于同时观测到的动力学以一种有原则的方式进行光遗传学刺激)是对神经回路进行因果研究的有力策略。特别是,在生理相关的时间尺度上观测并反馈电路干预的效果,对于直接测试动力学、连接性和因果关系的推断模型在体内是否准确非常有价值。在这里,我们重点介绍该领域的技术和理论基础以及近期的进展和机遇,并且在行为动物中通过闭环光遗传学控制来应对这些挑战的背景下,详细回顾光遗传学实验已知的注意事项和局限性。

相似文献

1
Closed-loop and activity-guided optogenetic control.闭环与活动引导的光遗传学控制。
Neuron. 2015 Apr 8;86(1):106-39. doi: 10.1016/j.neuron.2015.03.034.
2
Closed-loop all-optical interrogation of neural circuits in vivo.体内神经回路的闭环全光学检测。
Nat Methods. 2018 Dec;15(12):1037-1040. doi: 10.1038/s41592-018-0183-z. Epub 2018 Nov 12.
3
All-Optical Interrogation of Neural Circuits.神经回路的全光检测
J Neurosci. 2015 Oct 14;35(41):13917-26. doi: 10.1523/JNEUROSCI.2916-15.2015.
7
Optogenetic manipulation of neural circuitry in vivo.在体神经回路的光遗传学操控。
Curr Opin Neurobiol. 2011 Jun;21(3):433-9. doi: 10.1016/j.conb.2011.02.010. Epub 2011 Mar 21.
10
High-resolution optogenetics in space and time.时空高分辨率光遗传学
Trends Neurosci. 2022 Nov;45(11):854-864. doi: 10.1016/j.tins.2022.09.002. Epub 2022 Sep 30.

引用本文的文献

1
Decoding decision-making behavior from sparse neural spiking activity.从稀疏神经脉冲活动中解码决策行为。
PLoS Comput Biol. 2025 Aug 21;21(8):e1013335. doi: 10.1371/journal.pcbi.1013335. eCollection 2025 Aug.
3
Innovating beyond electrophysiology through multimodal neural interfaces.通过多模态神经接口超越电生理学进行创新。
Nat Rev Electr Eng. 2025 Jan;2(1):42-57. doi: 10.1038/s44287-024-00121-x. Epub 2024 Dec 16.
4
Prioritized learning of cross-population neural dynamics.跨群体神经动力学的优先学习
J Neural Eng. 2025 Aug 11;22(4):046040. doi: 10.1088/1741-2552/ade569.

本文引用的文献

1
In vivo evaluation of the dentate gate theory in epilepsy.癫痫中齿状门控理论的体内评估
J Physiol. 2015 May 15;593(10):2379-88. doi: 10.1113/JP270056. Epub 2015 Mar 31.
6
Place cells, grid cells, and memory.位置细胞、网格细胞与记忆。
Cold Spring Harb Perspect Biol. 2015 Feb 2;7(2):a021808. doi: 10.1101/cshperspect.a021808.
10
The graphical lasso: New insights and alternatives.图形套索:新见解与替代方法。
Electron J Stat. 2012 Nov 9;6:2125-2149. doi: 10.1214/12-EJS740.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验