Suppr超能文献

利用聚合测量学习控制神经元

Learning to Control Neurons using Aggregated Measurements.

作者信息

Yu Yao-Chi, Narayanan Vignesh, Ching ShiNung, Li Jr-Shin

机构信息

Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.

Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA.

出版信息

Proc Am Control Conf. 2020 Jul;2020:4028-4033. doi: 10.23919/acc45564.2020.9147426. Epub 2020 Jul 27.

Abstract

Controlling a population of neurons with one or a few control signals is challenging due to the severely underactuated nature of the control system and the inherent nonlinear dynamics of the neurons that are typically unknown. Control strategies that incorporate deep neural networks and machine learning techniques directly use data to learn a sequence of control actions for targeted manipulation of a population of neurons. However, these learning strategies inherently assume that perfect feedback data from each neuron at every sampling instant are available, and do not scale gracefully as the number of neurons in the population increases. As a result, the learning models need to be retrained whenever such a change occurs. In this work, we propose a learning strategy to design a control sequence by using population-level aggregated measurements and incorporate reinforcement learning techniques to find a (bounded, piecewise constant) control policy that fulfills the given control task. We demonstrate the feasibility of the proposed approach using numerical experiments on a finite population of nonlinear dynamical systems and canonical phase models that are widely used in neuroscience.

摘要

由于控制系统严重欠驱动的特性以及通常未知的神经元固有非线性动力学,用一个或几个控制信号来控制一群神经元具有挑战性。结合深度神经网络和机器学习技术的控制策略直接利用数据来学习一系列控制动作,以对一群神经元进行有针对性的操纵。然而,这些学习策略本质上假设在每个采样时刻都能获得来自每个神经元的完美反馈数据,并且随着群体中神经元数量的增加,其扩展性不佳。因此,每当发生这种变化时,学习模型都需要重新训练。在这项工作中,我们提出一种学习策略,通过使用群体水平的聚合测量来设计控制序列,并结合强化学习技术来找到一个满足给定控制任务的(有界、分段常数)控制策略。我们通过对有限数量的非线性动力系统和神经科学中广泛使用的典型相位模型进行数值实验,证明了所提出方法的可行性。

相似文献

1
Learning to Control Neurons using Aggregated Measurements.利用聚合测量学习控制神经元
Proc Am Control Conf. 2020 Jul;2020:4028-4033. doi: 10.23919/acc45564.2020.9147426. Epub 2020 Jul 27.
2
Moment-Based Reinforcement Learning for Ensemble Control.用于集成控制的基于矩的强化学习
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):12653-12664. doi: 10.1109/TNNLS.2023.3264151. Epub 2024 Sep 4.

引用本文的文献

本文引用的文献

1
Learning-based Approaches for Controlling Neural Spiking.基于学习的神经放电控制方法。
Proc Am Control Conf. 2018 Jun;2018. doi: 10.23919/acc.2018.8431158. Epub 2018 Aug 16.
3
Novel electrode technologies for neural recordings.新型神经记录电极技术。
Nat Rev Neurosci. 2019 Jun;20(6):330-345. doi: 10.1038/s41583-019-0140-6.
6
Designing optimal stimuli to control neuronal spike timing.设计最优刺激来控制神经元尖峰时间。
J Neurophysiol. 2011 Aug;106(2):1038-53. doi: 10.1152/jn.00427.2010. Epub 2011 Apr 20.
7
Single-neuron dynamics in human focal epilepsy.人类局灶性癫痫中单神经元动力学。
Nat Neurosci. 2011 May;14(5):635-41. doi: 10.1038/nn.2782. Epub 2011 Mar 27.
8
Noise in the nervous system.神经系统中的噪音。
Nat Rev Neurosci. 2008 Apr;9(4):292-303. doi: 10.1038/nrn2258.
9
Deep brain stimulation for dystonia.用于治疗肌张力障碍的深部脑刺激术。
J Clin Neurophysiol. 2004 Jan-Feb;21(1):18-30. doi: 10.1097/00004691-200401000-00004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验