Department of Anesthesiology and Pain Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Republic of Korea.
Strategic R&D Center, Biobrain Inc. 723, 408 Daedeok-daero Seo-gu, Daejeon City, Republic of Korea.
Int J Med Sci. 2021 Mar 15;18(10):2117-2127. doi: 10.7150/ijms.54677. eCollection 2021.
Assessment the depth of dexmedetomidine sedation using electroencephalographic (EEG) features can improve the quality of procedural sedation. Previous volunteer studies of dexmedetomidine-induced EEG changes need to be validated, and changes in bicoherence spectra during dexmedetomidine sedation has not been revealed yet. We aimed to investigate the dexmedetomidine-induced EEG change using power spectral and bicoherence analyses in the clinical setting. Thirty-six patients undergoing orthopedic surgery under spinal anesthesia were enrolled in this study. Dexmedetomidine sedation was conducted by the stepwise increase in target effect site concentration (Ce) while assessing sedation levels. Bispectral index (BIS) and frontal electroencephalography were recorded continuously, and the performance of BIS and changes in power and bicoherence spectra were analyzed with the data from the F3 electrode. The prediction probability values for detecting different sedation levels were 0.847, 0.841, and 0.844 in BIS, 95% spectral edge frequency, and dexmedetomidine Ce, respectively. As the depth of sedation increased, δ power increased, but high β and γ power decreased significantly ( <0.001). α and spindle power increased significantly under light and moderate sedation ( <0.001 in light vs baseline and deep sedation; = 0.002 and <0.001 in moderate sedation vs baseline and deep sedation, respectively). The bicoherence peaks of the δ and α-spindle regions along the diagonal line of the bicoherence matrix emerged during moderate and deep sedation. Peak bicoherence in the δ area showed sedation-dependent increases (29.93%±7.38%, 36.72%±9.70%, 44.88%±12.90%; light, moderate, and deep sedation; = 0.008 and <0.001 in light sedation vs moderate and deep sedation, respectively; = 0.007 in moderate sedation vs deep sedation), whereas peak bicoherence in the α-spindle area did not change (22.92%±4.90%, 24.72%±4.96%, and 26.96%±8.42%, respectively; =0.053). The increase of δ power and the decrease of high-frequency power were associated with the gradual deepening of dexmedetomidine sedation. The δ bicoherence peak increased with increasing sedation level and can serve as an indicator reflecting dexmedetomidine sedation levels.
使用脑电(EEG)特征评估右美托咪定镇静深度可以提高程序镇静的质量。需要对右美托咪定诱导的 EEG 变化的先前志愿者研究进行验证,并且尚未揭示右美托咪定镇静期间双相干谱的变化。我们旨在研究临床环境中使用功率谱和双相干分析的右美托咪定诱导的 EEG 变化。
36 例在脊髓麻醉下接受骨科手术的患者被纳入本研究。通过逐步增加目标效应部位浓度(Ce)来进行右美托咪定镇静,同时评估镇静水平。连续记录脑电双频指数(BIS)和额部脑电图,使用 F3 电极的数据分析 BIS 的性能和功率及双相干谱的变化。BIS、95%谱边缘频率和右美托咪定 Ce 检测不同镇静水平的预测概率值分别为 0.847、0.841 和 0.844。随着镇静深度的增加,δ 功率增加,但高频β和γ功率显著降低(<0.001)。轻度和中度镇静时α和纺锤波功率显著增加(与基线和深度镇静相比,轻度镇静时差异有统计学意义(<0.001);与基线和深度镇静相比,中度镇静时差异有统计学意义( = 0.002 和<0.001))。中度和深度镇静时,双相干矩阵对角线上出现 δ 和α-纺锤波区域的双相干峰。δ 区的峰双相干显示出与镇静相关的增加(29.93%±7.38%、36.72%±9.70%、44.88%±12.90%;轻度、中度和深度镇静;与中度和深度镇静相比,轻度镇静时差异有统计学意义( = 0.008 和<0.001);与深度镇静相比,中度镇静时差异有统计学意义( = 0.007)),而α-纺锤波区域的峰双相干没有变化(22.92%±4.90%、24.72%±4.96%和 26.96%±8.42%;=0.053)。δ 功率的增加和高频功率的减少与右美托咪定镇静的逐渐加深有关。随着镇静水平的增加,δ 双相干峰增加,可作为反映右美托咪定镇静水平的指标。