Suppr超能文献

癌症驱动因素发现的计算方法:一项综述。

Computational methods for cancer driver discovery: A survey.

作者信息

Pham Vu Viet Hoang, Liu Lin, Bracken Cameron, Goodall Gregory, Li Jiuyong, Le Thuc Duy

机构信息

UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, AU.

Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, AU.

出版信息

Theranostics. 2021 Mar 20;11(11):5553-5568. doi: 10.7150/thno.52670. eCollection 2021.

Abstract

Identifying the genes responsible for driving cancer is of critical importance for directing treatment. Accordingly, multiple computational tools have been developed to facilitate this task. Due to the different methods employed by these tools, different data considered by the tools, and the rapidly evolving nature of the field, the selection of an appropriate tool for cancer driver discovery is not straightforward. This survey seeks to provide a comprehensive review of the different computational methods for discovering cancer drivers. We categorise the methods into three groups; methods for single driver identification, methods for driver module identification, and methods for identifying personalised cancer drivers. In addition to providing a "one-stop" reference of these methods, by evaluating and comparing their performance, we also provide readers the information about the different capabilities of the methods in identifying biologically significant cancer drivers. The biologically relevant information identified by these tools can be seen through the enrichment of discovered cancer drivers in GO biological processes and KEGG pathways and through our identification of a small cancer-driver cohort that is capable of stratifying patient survival.

摘要

识别驱动癌症的基因对于指导治疗至关重要。因此,已经开发了多种计算工具来促进这项任务。由于这些工具采用的方法不同、考虑的数据不同以及该领域快速发展的性质,选择合适的癌症驱动因素发现工具并非易事。本综述旨在全面回顾发现癌症驱动因素的不同计算方法。我们将这些方法分为三组:单驱动因素识别方法、驱动模块识别方法和个性化癌症驱动因素识别方法。除了提供这些方法的“一站式”参考资料外,通过评估和比较它们的性能,我们还为读者提供了有关这些方法在识别具有生物学意义的癌症驱动因素方面的不同能力的信息。通过发现的癌症驱动因素在基因本体论(GO)生物学过程和京都基因与基因组百科全书(KEGG)通路中的富集,以及通过我们识别出的一个能够对患者生存进行分层的小型癌症驱动因素队列,可以看出这些工具识别出的生物学相关信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46a1/8039954/cfb2e204c0dd/thnov11p5553g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验