Gao Shan, Han Renmin, Zeng Xiangrui, Cui Xuefeng, Liu Zhiyong, Xu Min, Zhang Fa
High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.
University of Chinese Academy of Sciences, Beijing, China.
Bioinform Res Appl. 2020 Dec;12304:82-94. doi: 10.1007/978-3-030-57821-3_8. Epub 2020 Aug 18.
Cryo-electron tomography (cryo-ET) combined with subtomogram averaging (STA) is a unique technique in revealing macromolecule structures in their near-native state. However, due to the macromolecular structural heterogeneity, low signal-to-noise-ratio (SNR) and anisotropic resolution in the tomogram, macromolecule classification, a critical step of STA, remains a great challenge. In this paper, we propose a novel convolution neural network, named 3D-Dilated-DenseNet, to improve the performance of macromolecule classification in STA. The proposed 3D-Dilated-DenseNet is challenged by the synthetic dataset in the SHREC contest and the experimental dataset, and compared with the SHREC-CNN (the state-of-the-art CNN model in the SHREC contest) and the baseline 3D-DenseNet. The results showed that 3D-Dilated-DenseNet significantly outperformed 3D-DenseNet but 3D-DenseNet is well above SHREC-CNN. Moreover, in order to further demonstrate the validity of dilated convolution in the classification task, we visualized the feature map of 3D-Dilated-DenseNet and 3D-DenseNet. Dilated convolution extracts a much more representative feature map.
冷冻电子断层扫描(cryo-ET)与亚断层平均(STA)相结合是一种揭示近天然状态下大分子结构的独特技术。然而,由于大分子结构的异质性、断层图中低信噪比(SNR)和各向异性分辨率,STA的关键步骤——大分子分类仍然是一个巨大的挑战。在本文中,我们提出了一种名为3D-Dilated-DenseNet的新型卷积神经网络,以提高STA中大分子分类的性能。所提出的3D-Dilated-DenseNet在SHREC竞赛中的合成数据集和实验数据集上进行了测试,并与SHREC-CNN(SHREC竞赛中最先进的CNN模型)和基线3D-DenseNet进行了比较。结果表明,3D-Dilated-DenseNet明显优于3D-DenseNet,但3D-DenseNet远高于SHREC-CNN。此外,为了进一步证明扩张卷积在分类任务中的有效性,我们对3D-Dilated-DenseNet和3D-DenseNet的特征图进行了可视化。扩张卷积提取了更具代表性的特征图。