IEEE/ACM Trans Comput Biol Bioinform. 2022 Jan-Feb;19(1):209-219. doi: 10.1109/TCBB.2021.3065986. Epub 2022 Feb 3.
Cryo-electron tomography, combined with subtomogram averaging (STA), can reveal three-dimensional (3D) macromolecule structures in the near-native state from cells and other biological samples. In STA, to get a high-resolution 3D view of macromolecule structures, diverse macromolecules captured by the cellular tomograms need to be accurately classified. However, due to the poor signal-to-noise-ratio (SNR) and severe ray artifacts in the tomogram, it remains a major challenge to classify macromolecules with high accuracy. In this paper, we propose a new convolutional neural network, named 3D-Dilated-DenseNet, to improve the performance of macromolecule classification. In 3D-Dilated-DenseNet, there are two key strategies to guarantee macromolecule classification accuracy: 1) Using dense connections to enhance feature map utilization (corresponding to the baseline 3D-C-DenseNet); 2) Adopting dilated convolution to enrich multi-level information in feature maps. We tested 3D-Dilated-DenseNet and 3D-C-DenseNet both on synthetic data and experimental data. The results show that, on synthetic data, compared with the state-of-the-art method in the SHREC contest (SHREC-CNN), both 3D-C-DenseNet and 3D-Dilated-DenseNet outperform SHREC-CNN. In particular, 3D-Dilated-DenseNet improves 0.393 of F1 metric on tiny-size macromolecules and 0.213 on small-size macromolecules. On experimental data, compared with 3D-C-DenseNet, 3D-Dilated-DenseNet can increase classification performance by 2.1 percent.
冷冻电子断层扫描结合亚断层平均化(STA)可以从细胞和其他生物样本中揭示接近天然状态的三维(3D)大分子结构。在 STA 中,为了获得大分子结构的高分辨率 3D 视图,需要准确地对细胞断层扫描中捕获的各种大分子进行分类。然而,由于断层图像中的信噪比(SNR)差和射线伪影严重,因此高精度地分类大分子仍然是一个主要挑战。在本文中,我们提出了一种新的卷积神经网络,称为 3D-Dilated-DenseNet,以提高大分子分类的性能。在 3D-Dilated-DenseNet 中,有两个关键策略可保证大分子分类的准确性:1)使用密集连接来增强特征图的利用率(对应于基线 3D-C-DenseNet);2)采用空洞卷积来丰富特征图中的多层次信息。我们在合成数据和实验数据上测试了 3D-Dilated-DenseNet 和 3D-C-DenseNet。结果表明,在合成数据上,与 SHREC 竞赛中的最先进方法(SHREC-CNN)相比,3D-C-DenseNet 和 3D-Dilated-DenseNet 均优于 SHREC-CNN。特别是,3D-Dilated-DenseNet 在微小尺寸大分子上提高了 0.393 的 F1 度量值,在小尺寸大分子上提高了 0.213。在实验数据上,与 3D-C-DenseNet 相比,3D-Dilated-DenseNet 可以将分类性能提高 2.1%。