Dong Yihui, Laaksonen Aatto, Huo Feng, Gao Qingwei, Ji Xiaoyan
Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
Langmuir. 2021 Apr 27;37(16):5012-5021. doi: 10.1021/acs.langmuir.1c00525. Epub 2021 Apr 16.
Trace detection based on surface-enhanced Raman scattering (SERS) has attracted considerable attention, and exploiting efficient strategies to stretch the limit of detection and understanding the mechanisms on molecular level are of utmost importance. In this work, we use ionic liquids (ILs) as trace additives in a protein-TiO system, allowing us to obtain an exceptionally low limit of detection down to 10 M. The enhancement factors (EFs) were determined to 2.30 × 10, 6.17 × 10, and 1.19 × 10, for the three systems: one without ILs, one with ILs in solutions, and one with ILs immobilized on the TiO substrate, respectively, corresponding to the molecular forces of 1.65, 1.32, and 1.16 nN quantified by the atomic force microscopy. The dissociation and following hydration of ILs, occurring in the SERS system, weakened the molecular forces but instead improved the electron transfer ability of ILs, which is the major contribution for the observed excellent detection. The weaker diffusion of the hydrated IL ions immobilized on the TiO substrate did provide a considerably greater EF value, compared to the ILs in the solution. This work clearly demonstrates the importance of the hydration of ions, causing an improved electron transfer ability of ILs and leading to an exceptional SERS performance in the field of trace detection. Our results should stimulate further development to use ILs in SERS and related applications in bioanalysis, medical diagnosis, and environmental science.
基于表面增强拉曼散射(SERS)的痕量检测已引起广泛关注,开发有效的策略以拓展检测极限并在分子水平上理解其机制至关重要。在本工作中,我们在蛋白质 - 二氧化钛体系中使用离子液体(ILs)作为痕量添加剂,从而获得了低至10⁻¹² M的极低检测限。对于三个体系,增强因子(EFs)分别确定为2.30×10⁶、6.17×10⁶和1.19×10⁶:一个体系无ILs,一个体系ILs在溶液中,另一个体系ILs固定在二氧化钛基底上,分别对应通过原子力显微镜量化的1.65、1.32和1.16 nN的分子力。在SERS体系中发生的ILs的解离及随后的水合作用,削弱了分子力,但却提高了ILs的电子转移能力,这是观察到的出色检测效果的主要贡献因素。与溶液中的ILs相比,固定在二氧化钛基底上的水合IL离子较弱的扩散确实提供了相当大的EF值。这项工作清楚地证明了离子水合作用的重要性,它导致ILs的电子转移能力提高,并在痕量检测领域带来了出色的SERS性能。我们的结果应会刺激在SERS中使用ILs以及在生物分析、医学诊断和环境科学等相关应用方面的进一步发展。