Ye Qixiang, Wan Fang, Liu Chang, Huang Qingming, Ji Xiangyang
IEEE Trans Neural Netw Learn Syst. 2022 Oct;33(10):5452-5466. doi: 10.1109/TNNLS.2021.3070801. Epub 2022 Oct 5.
Weakly supervised object detection (WSOD) is a challenging task that requires simultaneously learning object detectors and estimating object locations under the supervision of image category labels. Many WSOD methods that adopt multiple instance learning (MIL) have nonconvex objective functions and, therefore, are prone to get stuck in local minima (falsely localize object parts) while missing full object extent during training. In this article, we introduce classical continuation optimization into MIL, thereby creating continuation MIL (C-MIL) with the aim to alleviate the nonconvexity problem in a systematic way. To fulfill this purpose, we partition instances into class-related and spatially related subsets and approximate MIL's objective function with a series of smoothed objective functions defined within the subsets. We further propose a parametric strategy to implement continuation smooth functions, which enables C-MIL to be applied to instance selection tasks in a uniform manner. Optimizing smoothed loss functions prevents the training procedure from falling prematurely into local minima and facilities learning full object extent. Extensive experiments demonstrate the superiority of CMIL over conventional MIL methods. As a general instance selection method, C-MIL is also applied to supervised object detection to optimize anchors/features, improving the detection performance with a significant margin.
弱监督目标检测(WSOD)是一项具有挑战性的任务,它需要在图像类别标签的监督下同时学习目标检测器并估计目标位置。许多采用多实例学习(MIL)的WSOD方法具有非凸目标函数,因此在训练过程中容易陷入局部最小值(错误地定位目标部分),同时错过完整的目标范围。在本文中,我们将经典的连续优化引入到MIL中,从而创建连续MIL(C-MIL),旨在系统地缓解非凸性问题。为了实现这一目的,我们将实例划分为与类别相关和与空间相关的子集,并用在子集中定义的一系列平滑目标函数来近似MIL的目标函数。我们进一步提出了一种参数化策略来实现连续平滑函数,这使得C-MIL能够以统一的方式应用于实例选择任务。优化平滑损失函数可防止训练过程过早陷入局部最小值,并有助于学习完整的目标范围。大量实验证明了C-MIL相对于传统MIL方法的优越性。作为一种通用的实例选择方法,C-MIL还应用于监督目标检测以优化锚点/特征,显著提高了检测性能。