Suppr超能文献

一种用于肺癌中PD-L1表达自动分析的弱监督深度学习框架。

A weakly supervised deep learning framework for automated PD-L1 expression analysis in lung cancer.

作者信息

Jiao Feng, Shang Zhanxian, Lu Hongmin, Chen Peilin, Chen Shiting, Xiao Jiayi, Zhang Fuchuang, Zhang Dadong, Lv Chunxin, Han Yuchen

机构信息

Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.

出版信息

Front Immunol. 2025 Mar 31;16:1540087. doi: 10.3389/fimmu.2025.1540087. eCollection 2025.

Abstract

The growing application of immune checkpoint inhibitors (ICIs) in cancer immunotherapy has underscored the critical need for reliable methods to identify patient populations likely to respond to ICI treatments, particularly in lung cancer treatment. Currently, the tumor proportion score (TPS), a crucial biomarker for patient selection, relies on manual interpretation by pathologists, which often shows substantial variability and inconsistency. To address these challenges, we innovatively developed multi-instance learning for TPS (MiLT), an innovative artificial intelligence (AI)-powered tool that predicts TPS from whole slide images. Our approach leverages multiple instance learning (MIL), which significantly reduces the need for labor-intensive cell-level annotations while maintaining high accuracy. In comprehensive validation studies, MiLT demonstrated remarkable consistency with pathologist assessments (intraclass correlation coefficient = 0.960, 95% confidence interval = 0.950-0.971) and robust performance across both internal and external cohorts. This tool not only standardizes TPS evaluation but also adapts to various clinical standards and provides time-efficient predictions, potentially transforming routine pathological practice. By offering a reliable, AI-assisted solution, MiLT could significantly improve patient selection for immunotherapy and reduce inter-observer variability among pathologists. These promising results warrant further exploration in prospective clinical trials and suggest new possibilities for integrating advanced AI in pathological diagnostics. MiLT represents a significant step toward more precise and efficient cancer immunotherapy decision-making.

摘要

免疫检查点抑制剂(ICI)在癌症免疫治疗中的应用日益广泛,这凸显了对可靠方法的迫切需求,以识别可能对ICI治疗有反应的患者群体,尤其是在肺癌治疗中。目前,肿瘤比例评分(TPS)作为患者选择的关键生物标志物,依赖病理学家的人工解读,而这种解读往往存在很大的变异性和不一致性。为应对这些挑战,我们创新性地开发了用于TPS的多实例学习(MiLT),这是一种创新的人工智能(AI)驱动工具,可从全切片图像预测TPS。我们的方法利用了多实例学习(MIL),在保持高精度的同时,显著减少了对劳动密集型细胞水平注释的需求。在全面的验证研究中,MiLT与病理学家的评估显示出显著的一致性(组内相关系数=0.960,95%置信区间=0.950-0.971),并且在内部和外部队列中均表现出稳健的性能。该工具不仅使TPS评估标准化,还能适应各种临床标准并提供高效的预测,有可能改变常规病理实践。通过提供一种可靠的、AI辅助的解决方案,MiLT可以显著改善免疫治疗的患者选择,并减少病理学家之间的观察者间变异性。这些有前景的结果值得在前瞻性临床试验中进一步探索,并为将先进AI整合到病理诊断中提出了新的可能性。MiLT代表了朝着更精确、高效的癌症免疫治疗决策迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c3/11994606/6bf1e3c49677/fimmu-16-1540087-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验