Suppr超能文献

一种用于具有迟发性毒性的 I 期临床试验的贝叶斯最优区间设计的新框架。

A novel framework of Bayesian optimal interval design for phase I trials with late-onset toxicities.

机构信息

Biostatistics and Research Decision Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA.

Biostatistics and Research Decision Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA.

出版信息

Contemp Clin Trials. 2021 Jun;105:106404. doi: 10.1016/j.cct.2021.106404. Epub 2021 Apr 18.

Abstract

As molecularly targeted agents (MTAs) and immunotherapies have widely demonstrated delayed toxicity profile after multiple treatment cycles, the traditional phase I dose-finding designs may not be appropriate anymore because they just account for the acute toxicities occurring in the early period of treatment. When the dose-limiting toxicity (DLT) assessment window is prolonged to account for late-onset DLTs, it will cause logistic issues if the enrollment is suspended until all the DLT information is collected. We propose a novel framework to estimate the toxicity probability in the scenarios where some patients' DLT information are not complete and then implement the Bayesian optimal interval (BOIN) design to make decisions on dose escalation/de-escalation. Our proposed approach maintains BOIN's transparency by simply comparing the estimated toxicity probability with the escalation/de-escalation boundaries to decide the next dose level. The numerical studies show that our proposed framework can achieve comparable operating characteristics as other dose-finding designs considering late-onset DLTs, thus providing an attractive option of phase I dose-finding clinical trials for MTAs and immunotherapies.

摘要

由于分子靶向药物(MTAs)和免疫疗法在多次治疗周期后表现出延迟毒性特征,传统的 I 期剂量探索设计可能不再适用,因为它们只考虑了治疗早期发生的急性毒性。当剂量限制毒性(DLT)评估窗口延长以考虑迟发性 DLT 时,如果要等到所有 DLT 信息收集完毕才开始入组,将会导致出现后勤问题。我们提出了一种新的框架来估计在部分患者 DLT 信息不完全的情况下的毒性概率,然后实施贝叶斯最优区间(BOIN)设计来进行剂量递增/递减决策。我们提出的方法通过简单地将估计的毒性概率与递增/递减边界进行比较来决定下一个剂量水平,从而保持 BOIN 的透明度。数值研究表明,我们提出的方法在考虑迟发性 DLT 的情况下,可以与其他剂量探索设计达到可比的操作特征,因此为 MTAs 和免疫疗法的 I 期剂量探索临床试验提供了一个有吸引力的选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验