Biostatistics and Research Decision Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
Biostatistics and Research Decision Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
Contemp Clin Trials. 2021 Jun;105:106404. doi: 10.1016/j.cct.2021.106404. Epub 2021 Apr 18.
As molecularly targeted agents (MTAs) and immunotherapies have widely demonstrated delayed toxicity profile after multiple treatment cycles, the traditional phase I dose-finding designs may not be appropriate anymore because they just account for the acute toxicities occurring in the early period of treatment. When the dose-limiting toxicity (DLT) assessment window is prolonged to account for late-onset DLTs, it will cause logistic issues if the enrollment is suspended until all the DLT information is collected. We propose a novel framework to estimate the toxicity probability in the scenarios where some patients' DLT information are not complete and then implement the Bayesian optimal interval (BOIN) design to make decisions on dose escalation/de-escalation. Our proposed approach maintains BOIN's transparency by simply comparing the estimated toxicity probability with the escalation/de-escalation boundaries to decide the next dose level. The numerical studies show that our proposed framework can achieve comparable operating characteristics as other dose-finding designs considering late-onset DLTs, thus providing an attractive option of phase I dose-finding clinical trials for MTAs and immunotherapies.
由于分子靶向药物(MTAs)和免疫疗法在多次治疗周期后表现出延迟毒性特征,传统的 I 期剂量探索设计可能不再适用,因为它们只考虑了治疗早期发生的急性毒性。当剂量限制毒性(DLT)评估窗口延长以考虑迟发性 DLT 时,如果要等到所有 DLT 信息收集完毕才开始入组,将会导致出现后勤问题。我们提出了一种新的框架来估计在部分患者 DLT 信息不完全的情况下的毒性概率,然后实施贝叶斯最优区间(BOIN)设计来进行剂量递增/递减决策。我们提出的方法通过简单地将估计的毒性概率与递增/递减边界进行比较来决定下一个剂量水平,从而保持 BOIN 的透明度。数值研究表明,我们提出的方法在考虑迟发性 DLT 的情况下,可以与其他剂量探索设计达到可比的操作特征,因此为 MTAs 和免疫疗法的 I 期剂量探索临床试验提供了一个有吸引力的选择。