Zhou Yanhong, Lee J Jack, Yuan Ying
Quantitative Science, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas.
Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
Stat Med. 2019 Dec 10;38(28):5299-5316. doi: 10.1002/sim.8361. Epub 2019 Oct 17.
In the era of targeted therapy and immunotherapy, the objective of dose finding is often to identify the optimal biological dose (OBD), rather than the maximum tolerated dose. We develop a utility-based Bayesian optimal interval (U-BOIN) phase I/II design to find the OBD. We jointly model toxicity and efficacy using a multinomial-Dirichlet model, and employ a utility function to measure dose risk-benefit trade-off. The U-BOIN design consists of two seamless stages. In stage I, the Bayesian optimal interval design is used to quickly explore the dose space and collect preliminary toxicity and efficacy data. In stage II, we continuously update the posterior estimate of the utility for each dose after each cohort, using accumulating efficacy and toxicity from both stages I and II, and then use the posterior estimate to direct the dose assignment and selection. Compared to existing phase I/II designs, one prominent advantage of the U-BOIN design is its simplicity for implementation. Once the trial is designed, it can be easily applied using predetermined decision tables, without complex model fitting and estimation. Our simulation study shows that, despite its simplicity, the U-BOIN design is robust and has high accuracy to identify the OBD. We extend the design to accommodate delayed efficacy by leveraging the short-term endpoint (eg, immune activity or other biological activity of targeted agents), and using it to predict the delayed efficacy outcome to facilitate real-time decision making. A user-friendly software to implement the U-BOIN is freely available at www.trialdesign.org.
在靶向治疗和免疫治疗时代,剂量探索的目标通常是确定最佳生物学剂量(OBD),而非最大耐受剂量。我们开发了一种基于效用的贝叶斯最优区间(U-BOIN)I/II期设计来寻找OBD。我们使用多项狄利克雷模型对毒性和疗效进行联合建模,并采用效用函数来衡量剂量的风险效益权衡。U-BOIN设计由两个无缝阶段组成。在第一阶段,贝叶斯最优区间设计用于快速探索剂量空间并收集初步的毒性和疗效数据。在第二阶段,我们在每个队列之后,利用来自第一阶段和第二阶段积累的疗效和毒性数据,不断更新每个剂量效用的后验估计,然后使用后验估计来指导剂量分配和选择。与现有的I/II期设计相比,U-BOIN设计的一个突出优点是其实施简单。一旦试验设计完成,使用预先确定的决策表就可以轻松应用,无需复杂的模型拟合和估计。我们的模拟研究表明,尽管U-BOIN设计简单,但它在识别OBD方面具有稳健性和高精度。我们通过利用短期终点(例如,靶向药物的免疫活性或其他生物学活性)来扩展该设计以适应延迟疗效,并使用它来预测延迟疗效结果以促进实时决策。可在www.trialdesign.org免费获取一个用于实施U-BOIN的用户友好型软件。