Suppr超能文献

透明细胞肾细胞癌的放射组学分析揭示了具有不同预后和分子途径的亚型。

Radiomic profiling of clear cell renal cell carcinoma reveals subtypes with distinct prognoses and molecular pathways.

作者信息

Lin Peng, Lin Yi-Qun, Gao Rui-Zhi, Wen Rong, Qin Hui, He Yun, Yang Hong

机构信息

Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China.

Department of Radiology, The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, Fujian Province 363020, China.

出版信息

Transl Oncol. 2021 Jul;14(7):101078. doi: 10.1016/j.tranon.2021.101078. Epub 2021 Apr 13.

Abstract

BACKGROUND

To identify radiomic subtypes of clear cell renal cell carcinoma (ccRCC) patients with distinct clinical significance and molecular characteristics reflective of the heterogeneity of ccRCC.

METHODS

Quantitative radiomic features of ccRCC were extracted from preoperative CT images of 160 ccRCC patients. Unsupervised consensus cluster analysis was performed to identify robust radiomic subtypes based on these features. The Kaplan-Meier method and chi-square test were used to assess the different clinicopathological characteristics and gene mutations among the radiomic subtypes. Subtype-specific marker genes were identified, and gene set enrichment analyses were performed to reveal the specific molecular characteristics of each subtype. Moreover, a gene expression-based classifier of radiomic subtypes was developed using the random forest algorithm and tested in another independent cohort (n = 101).

RESULTS

Radiomic profiling revealed three ccRCC subtypes with distinct clinicopathological features and prognoses. VHL, MUC16, FBN2, and FLG were found to have different mutation frequencies in these radiomic subtypes. In addition, transcriptome analysis revealed that the dysregulation of cell cycle-related pathways may be responsible for the distinct clinical significance of the obtained subtypes. The prognostic value of the radiomic subtypes was further validated in another independent cohort (log-rank P = 0.015).

CONCLUSION

In the present multi-scale radiogenomic analysis of ccRCC, radiomics played a central role. Radiomic subtypes could help discern genomic alterations and non-invasively stratify ccRCC patients.

摘要

背景

识别具有不同临床意义和反映透明细胞肾细胞癌(ccRCC)异质性分子特征的ccRCC患者的放射组学亚型。

方法

从160例ccRCC患者的术前CT图像中提取ccRCC的定量放射组学特征。基于这些特征进行无监督一致性聚类分析以识别稳健的放射组学亚型。采用Kaplan-Meier法和卡方检验评估放射组学亚型之间不同的临床病理特征和基因突变。鉴定亚型特异性标记基因,并进行基因集富集分析以揭示各亚型的特定分子特征。此外,使用随机森林算法开发了基于基因表达的放射组学亚型分类器,并在另一个独立队列(n = 101)中进行测试。

结果

放射组学分析揭示了三种具有不同临床病理特征和预后的ccRCC亚型。发现VHL、MUC16、FBN2和FLG在这些放射组学亚型中具有不同的突变频率。此外,转录组分析表明细胞周期相关通路的失调可能是所获得亚型具有不同临床意义的原因。放射组学亚型的预后价值在另一个独立队列中得到进一步验证(对数秩检验P = 0.015)。

结论

在本次对ccRCC的多尺度放射基因组分析中,放射组学发挥了核心作用。放射组学亚型有助于识别基因组改变并对ccRCC患者进行无创分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24a1/8065300/eb71a3ef618c/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验