Gao Jiahao, Ye Fangdie, Han Fang, Wang Xiaoshuang, Jiang Haowen, Zhang Jiawen
Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
Front Oncol. 2021 Oct 7;11:739815. doi: 10.3389/fonc.2021.739815. eCollection 2021.
To construct a novel radiogenomics biomarker based on hypoxic-gene subset for the accurate prognostic prediction of clear cell renal cell carcinoma (ccRCC).
Initially, we screened for the desired hypoxic-gene subset by analysis using the GSEA database. Through univariate and multivariate cox regression hazard ratio analysis, survival-related hypoxia genes were identified, and a genomics signature was constructed in the TCGA database. Building on this, a hypoxia-gene related radiogenomics biomarker (prediction of hypoxia-genes signature by contrast-enhanced CT radiomics) was constructed in the TCIA-KIRC database by extracting features in the venous phase of contrast-enhanced CT images, selecting features using the mRMR and LASSO algorithms, and building logistic regression models. Finally, we validated the prognostic capability of the new biomarker for patients with ccRCC in an independent validation cohort at Huashan Hospital of Fudan University, Shanghai, China.
The hypoxia-related genomics signature consisting of five genes (IFT57, PABPN1, RNF10, RNF19B and UBE2T) was shown to be significantly associated with survival for patients with ccRCC in the TCGA database, delineated by grouping of the signature expression as either low- or high-risk. In the TCIA database, we constructed a radiogenomics biomarker consisting of 13 radiomics features that were optimal predictors of hypoxia-gene signature expression levels (low- or high-risk) in patients at each institution, that demonstrated AUC values of 0.91 and 0.91 in the training and validation groups, respectively. In the independent validation cohort at Huashan Hospital, our radiogenomics biomarker was significantly associated with prognosis in patients with ccRCC (p=0.0059).
The novel prognostic radiogenomics biomarker that was constructed achieved excellent correlation with prognosis in both the cohort of TCGA/TCIA-KIRC database and the independent validation cohort of Huashan hospital patients with ccRCC. It is anticipated that this work may assist in clinical preferential treatment decisions and promote the process of precision theranostics in the future.
构建一种基于缺氧基因子集的新型放射基因组学生物标志物,用于准确预测透明细胞肾细胞癌(ccRCC)的预后。
首先,我们通过使用GSEA数据库进行分析来筛选所需的缺氧基因子集。通过单变量和多变量cox回归风险比分析,鉴定出生存相关的缺氧基因,并在TCGA数据库中构建基因组特征。在此基础上,通过在增强CT图像的静脉期提取特征、使用mRMR和LASSO算法选择特征以及构建逻辑回归模型,在TCIA-KIRC数据库中构建了一种与缺氧基因相关的放射基因组学生物标志物(通过增强CT放射组学预测缺氧基因特征)。最后,我们在中国上海复旦大学附属华山医院的一个独立验证队列中验证了这种新生物标志物对ccRCC患者的预后预测能力。
由五个基因(IFT57、PABPN1、RNF10、RNF19B和UBE2T)组成的缺氧相关基因组特征在TCGA数据库中显示与ccRCC患者的生存显著相关,通过将特征表达分组为低风险或高风险来描述。在TCIA数据库中,我们构建了一种由13个放射组学特征组成的放射基因组学生物标志物,这些特征是每个机构患者缺氧基因特征表达水平(低风险或高风险)的最佳预测指标,在训练组和验证组中的AUC值分别为0.91和0.91。在华山医院的独立验证队列中,我们的放射基因组学生物标志物与ccRCC患者的预后显著相关(p = 0.0059)。
构建的新型预后放射基因组学生物标志物在TCGA/TCIA-KIRC数据库队列以及华山医院ccRCC患者的独立验证队列中均与预后具有良好的相关性。预计这项工作可能有助于临床优先治疗决策,并在未来促进精准诊疗的进程。