Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States of America.
Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America.
J Neural Eng. 2021 May 5;18(4). doi: 10.1088/1741-2552/abf8ca.
Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD) but its success depends on a time-consuming process of trial-and-error to identify the optimal stimulation settings for each individual patient. Data-driven optimization algorithms have been proposed to efficiently find the stimulation setting that maximizes a quantitative biomarker of symptom relief. However, these algorithms cannot efficiently take into account stimulation settings that may control symptoms but also cause side effects. Here we demonstrate how multi-objective data-driven optimization can be used to find the optimal trade-off between maximizing symptom relief and minimizing side effects.Cortical and motor evoked potential data collected from PD patients during intraoperative stimulation of the subthalamic nucleus were used to construct a framework for designing and prototyping data-driven multi-objective optimization algorithms. Using this framework, we explored how these techniques can be applied clinically, and characterized the design features critical for solving this optimization problem. Our two optimization objectives were to maximize cortical evoked potentials, a putative biomarker of therapeutic benefit, and to minimize motor potentials, a biomarker of motor side effects.Using thisdesign framework, we demonstrated how the optimal trade-off between two objectives can substantially reduce the stimulation parameter space by 61 ± 19%. The best algorithm for identifying the optimal trade-off between the two objectives was a Bayesian optimization approach with an area under the receiver operating characteristic curve of up to 0.94 ± 0.02, which was possible with the use of a surrogate model and a well-tuned acquisition function to efficiently select which stimulation settings to sample.These findings show that multi-objective optimization is a promising approach for identifying the optimal trade-off between symptom relief and side effects in DBS. Moreover, these approaches can be readily extended to newly discovered biomarkers, adapted to DBS for disorders beyond PD, and can scale with the development of more complex DBS devices.
深部脑刺激(DBS)是治疗帕金森病(PD)的有效方法,但它的成功取决于一个耗时的试错过程,以确定每个患者的最佳刺激设置。已经提出了数据驱动的优化算法,以有效地找到最大限度地提高症状缓解的定量生物标志物的刺激设置。然而,这些算法不能有效地考虑到可能控制症状但也会引起副作用的刺激设置。在这里,我们展示了如何使用多目标数据驱动优化来找到最大化症状缓解和最小化副作用之间的最佳折衷。
从 PD 患者在亚丘脑核术中刺激期间收集的皮质和运动诱发电位数据用于构建设计和原型数据驱动多目标优化算法的框架。使用这个框架,我们探索了这些技术如何在临床上应用,并描述了解决这个优化问题的关键设计特征。我们的两个优化目标是最大化皮质诱发电位,这是一种治疗效益的潜在生物标志物,以及最小化运动电位,这是一种运动副作用的生物标志物。
使用这个设计框架,我们证明了如何通过将两个目标之间的最佳折衷,将刺激参数空间缩小 61 ± 19%。用于识别两个目标之间最佳折衷的最佳算法是贝叶斯优化方法,其接收者操作特征曲线下的面积高达 0.94 ± 0.02,这是通过使用替代模型和精心调整的获取函数来实现的,以有效地选择要采样的刺激设置。
这些发现表明,多目标优化是一种很有前途的方法,可以在 DBS 中识别症状缓解和副作用之间的最佳折衷。此外,这些方法可以很容易地扩展到新发现的生物标志物,适应于除 PD 以外的疾病的 DBS,并可以随着更复杂的 DBS 设备的发展而扩展。