Suppr超能文献

多目标数据驱动优化改善帕金森病的脑深部刺激。

Multi-objective data-driven optimization for improving deep brain stimulation in Parkinson's disease.

机构信息

Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States of America.

Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America.

出版信息

J Neural Eng. 2021 May 5;18(4). doi: 10.1088/1741-2552/abf8ca.

Abstract

Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD) but its success depends on a time-consuming process of trial-and-error to identify the optimal stimulation settings for each individual patient. Data-driven optimization algorithms have been proposed to efficiently find the stimulation setting that maximizes a quantitative biomarker of symptom relief. However, these algorithms cannot efficiently take into account stimulation settings that may control symptoms but also cause side effects. Here we demonstrate how multi-objective data-driven optimization can be used to find the optimal trade-off between maximizing symptom relief and minimizing side effects.Cortical and motor evoked potential data collected from PD patients during intraoperative stimulation of the subthalamic nucleus were used to construct a framework for designing and prototyping data-driven multi-objective optimization algorithms. Using this framework, we explored how these techniques can be applied clinically, and characterized the design features critical for solving this optimization problem. Our two optimization objectives were to maximize cortical evoked potentials, a putative biomarker of therapeutic benefit, and to minimize motor potentials, a biomarker of motor side effects.Using thisdesign framework, we demonstrated how the optimal trade-off between two objectives can substantially reduce the stimulation parameter space by 61 ± 19%. The best algorithm for identifying the optimal trade-off between the two objectives was a Bayesian optimization approach with an area under the receiver operating characteristic curve of up to 0.94 ± 0.02, which was possible with the use of a surrogate model and a well-tuned acquisition function to efficiently select which stimulation settings to sample.These findings show that multi-objective optimization is a promising approach for identifying the optimal trade-off between symptom relief and side effects in DBS. Moreover, these approaches can be readily extended to newly discovered biomarkers, adapted to DBS for disorders beyond PD, and can scale with the development of more complex DBS devices.

摘要

深部脑刺激(DBS)是治疗帕金森病(PD)的有效方法,但它的成功取决于一个耗时的试错过程,以确定每个患者的最佳刺激设置。已经提出了数据驱动的优化算法,以有效地找到最大限度地提高症状缓解的定量生物标志物的刺激设置。然而,这些算法不能有效地考虑到可能控制症状但也会引起副作用的刺激设置。在这里,我们展示了如何使用多目标数据驱动优化来找到最大化症状缓解和最小化副作用之间的最佳折衷。

从 PD 患者在亚丘脑核术中刺激期间收集的皮质和运动诱发电位数据用于构建设计和原型数据驱动多目标优化算法的框架。使用这个框架,我们探索了这些技术如何在临床上应用,并描述了解决这个优化问题的关键设计特征。我们的两个优化目标是最大化皮质诱发电位,这是一种治疗效益的潜在生物标志物,以及最小化运动电位,这是一种运动副作用的生物标志物。

使用这个设计框架,我们证明了如何通过将两个目标之间的最佳折衷,将刺激参数空间缩小 61 ± 19%。用于识别两个目标之间最佳折衷的最佳算法是贝叶斯优化方法,其接收者操作特征曲线下的面积高达 0.94 ± 0.02,这是通过使用替代模型和精心调整的获取函数来实现的,以有效地选择要采样的刺激设置。

这些发现表明,多目标优化是一种很有前途的方法,可以在 DBS 中识别症状缓解和副作用之间的最佳折衷。此外,这些方法可以很容易地扩展到新发现的生物标志物,适应于除 PD 以外的疾病的 DBS,并可以随着更复杂的 DBS 设备的发展而扩展。

相似文献

2
StimFit-A Data-Driven Algorithm for Automated Deep Brain Stimulation Programming.
Mov Disord. 2022 Mar;37(3):574-584. doi: 10.1002/mds.28878. Epub 2021 Nov 27.
3
Meta-Bayesian Optimization for Deep Brain Stimulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1729-1733. doi: 10.1109/EMBC48229.2022.9871279.
5
Imaging-based programming of subthalamic nucleus deep brain stimulation in Parkinson's disease.
Brain Stimul. 2021 Sep-Oct;14(5):1109-1117. doi: 10.1016/j.brs.2021.07.064. Epub 2021 Aug 2.
8
Semi-automated approaches to optimize deep brain stimulation parameters in Parkinson's disease.
J Neuroeng Rehabil. 2021 May 21;18(1):83. doi: 10.1186/s12984-021-00873-9.
9
Cortical Activation Elicited by Subthalamic Deep Brain Stimulation Predicts Postoperative Motor Side Effects.
Neuromodulation. 2019 Jun;22(4):456-464. doi: 10.1111/ner.12901. Epub 2019 Mar 7.
10
Deep brain stimulation of subthalamic nucleus helps in improving late phase motor planning in Parkinson's disease.
Clin Neurol Neurosurg. 2017 Sep;160:30-37. doi: 10.1016/j.clineuro.2017.06.011. Epub 2017 Jun 15.

引用本文的文献

2
Forgotten Tides: A Novel Strategy for Bayesian Optimization of Neurostimulation.
Epilepsy Curr. 2024 May 30;24(4):283-285. doi: 10.1177/15357597241254274. eCollection 2024 Jul-Aug.
4
Oscillatory network markers of subcallosal cingulate deep brain stimulation for depression.
Brain Stimul. 2023 Nov-Dec;16(6):1764-1775. doi: 10.1016/j.brs.2023.11.016. Epub 2023 Dec 6.
5
An optimization framework for targeted spinal cord stimulation.
J Neural Eng. 2023 Sep 28;20(5):056026. doi: 10.1088/1741-2552/acf522.
8
Programming of subthalamic nucleus deep brain stimulation for Parkinson's disease with sweet spot-guided parameter suggestions.
Front Hum Neurosci. 2022 Nov 1;16:925283. doi: 10.3389/fnhum.2022.925283. eCollection 2022.
9
The cortical evoked potential corresponds with deep brain stimulation efficacy in rats.
J Neurophysiol. 2022 May 1;127(5):1253-1268. doi: 10.1152/jn.00353.2021. Epub 2022 Apr 7.

本文引用的文献

1
Image-based biophysical modeling predicts cortical potentials evoked with subthalamic deep brain stimulation.
Brain Stimul. 2021 May-Jun;14(3):549-563. doi: 10.1016/j.brs.2021.03.009. Epub 2021 Mar 20.
2
A framework for designing data-driven optimization systems for neural modulation.
J Neural Eng. 2021 Feb 23;18(1). doi: 10.1088/1741-2552/abd048.
3
Evoked potentials reveal neural circuits engaged by human deep brain stimulation.
Brain Stimul. 2020 Nov-Dec;13(6):1706-1718. doi: 10.1016/j.brs.2020.09.028. Epub 2020 Oct 6.
5
Direct Activation of Primary Motor Cortex during Subthalamic But Not Pallidal Deep Brain Stimulation.
J Neurosci. 2020 Mar 4;40(10):2166-2177. doi: 10.1523/JNEUROSCI.2480-19.2020. Epub 2020 Feb 4.
6
Learning State-Dependent Neural Modulation Policies with Bayesian Optimization.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6454-6457. doi: 10.1109/EMBC.2019.8856742.
7
Towards automated patient-specific optimization of deep brain stimulation for movement disorders.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6159-6162. doi: 10.1109/EMBC.2019.8857736.
9
Probing circuit of Papez with stimulation of anterior nucleus of the thalamus and hippocampal evoked potentials.
Epilepsy Res. 2020 Jan;159:106248. doi: 10.1016/j.eplepsyres.2019.106248. Epub 2019 Nov 29.
10
Early Experience With New Generation Deep Brain Stimulation Leads in Parkinson's Disease and Essential Tremor Patients.
Neuromodulation. 2020 Jun;23(4):537-542. doi: 10.1111/ner.13034. Epub 2019 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验